208 research outputs found

    Open-radiomics: A Collection of Standardized Datasets and a Technical Protocol for Reproducible Radiomics Machine Learning Pipelines

    Full text link
    Purpose: As an important branch of machine learning pipelines in medical imaging, radiomics faces two major challenges namely reproducibility and accessibility. In this work, we introduce open-radiomics, a set of radiomics datasets along with a comprehensive radiomics pipeline based on our proposed technical protocol to investigate the effects of radiomics feature extraction on the reproducibility of the results. Materials and Methods: Experiments are conducted on BraTS 2020 open-source Magnetic Resonance Imaging (MRI) dataset that includes 369 adult patients with brain tumors (76 low-grade glioma (LGG), and 293 high-grade glioma (HGG)). Using PyRadiomics library for LGG vs. HGG classification, 288 radiomics datasets are formed; the combinations of 4 MRI sequences, 3 binWidths, 6 image normalization methods, and 4 tumor subregions. Random Forest classifiers were used, and for each radiomics dataset the training-validation-test (60%/20%/20%) experiment with different data splits and model random states was repeated 100 times (28,800 test results) and Area Under Receiver Operating Characteristic Curve (AUC) was calculated. Results: Unlike binWidth and image normalization, tumor subregion and imaging sequence significantly affected performance of the models. T1 contrast-enhanced sequence and the union of necrotic and the non-enhancing tumor core subregions resulted in the highest AUCs (average test AUC 0.951, 95% confidence interval of (0.949, 0.952)). Although 28 settings and data splits yielded test AUC of 1, they were irreproducible. Conclusion: Our experiments demonstrate the sources of variability in radiomics pipelines (e.g., tumor subregion) can have a significant impact on the results, which may lead to superficial perfect performances that are irreproducible

    VOLT: a novel open-source pipeline for automatic segmentation of endolymphatic space in inner ear MRI

    Get PDF
    BACKGROUND Objective and volumetric quantification is a necessary step in the assessment and comparison of endolymphatic hydrops (ELH) results. Here, we introduce a novel tool for automatic volumetric segmentation of the endolymphatic space (ELS) for ELH detection in delayed intravenous gadolinium-enhanced magnetic resonance imaging of inner ear (iMRI) data. METHODS The core component is a novel algorithm based on Volumetric Local Thresholding (VOLT). The study included three different data sets: a real-world data set (D1) to develop the novel ELH detection algorithm and two validating data sets, one artificial (D2) and one entirely unseen prospective real-world data set (D3). D1 included 210 inner ears of 105 patients (50 male; mean age 50.4 ± 17.1 years), and D3 included 20 inner ears of 10 patients (5 male; mean age 46.8 ± 14.4 years) with episodic vertigo attacks of different etiology. D1 and D3 did not differ significantly concerning age, gender, the grade of ELH, or data quality. As an artificial data set, D2 provided a known ground truth and consisted of an 8-bit cuboid volume using the same voxel-size and grid as real-world data with different sized cylindrical and cuboid-shaped cutouts (signal) whose grayscale values matched the real-world data set D1 (mean 68.7 ± 7.8; range 48.9-92.8). The evaluation included segmentation accuracy using the Sørensen-Dice overlap coefficient and segmentation precision by comparing the volume of the ELS. RESULTS VOLT resulted in a high level of performance and accuracy in comparison with the respective gold standard. In the case of the artificial data set, VOLT outperformed the gold standard in higher noise levels. Data processing steps are fully automated and run without further user input in less than 60 s. ELS volume measured by automatic segmentation correlated significantly with the clinical grading of the ELS (p < 0.01). CONCLUSION VOLT enables an open-source reproducible, reliable, and automatic volumetric quantification of the inner ears' fluid space using MR volumetric assessment of endolymphatic hydrops. This tool constitutes an important step towards comparable and systematic big data analyses of the ELS in patients with the frequent syndrome of episodic vertigo attacks. A generic version of our three-dimensional thresholding algorithm has been made available to the scientific community via GitHub as an ImageJ-plugin

    Different Imaging Strategies in Patients With Possible Basilar Artery Occlusion Cost-Effectiveness Analysis

    Get PDF
    Background and Purpose-This study evaluated the cost-effectiveness of different noninvasive imaging strategies in patients with possible basilar artery occlusion. Methods-A Markov decision analytic model was used to evaluate long-term outcomes resulting from strategies using computed tomographic angiography (CTA), magnetic resonance imaging, nonenhanced CT, or duplex ultrasound with intravenous (IV) thrombolysis being administered after positive findings. The analysis was performed from the societal perspective based on US recommendations. Input parameters were derived from the literature. Costs were obtained from United States costing sources and published literature. Outcomes were lifetime costs, quality-adjusted life-years (QALYs), incremental cost-effectiveness ratios, an

    Animal tissue-based quantitative comparison of dual-energy CT to SPR conversion methods using high-resolution gel dosimetry

    Get PDF
    Dual-energy computed tomography (DECT) has been shown to allow for more accurate ion therapy treatment planning by improving the estimation of tissue stopping power ratio (SPR) relative to water, among other tissue properties. In this study, we measured and compared the accuracy of SPR values derived using both dual- and single-energy CT (SECT) based on different published conversion algorithms. For this purpose, a phantom setup containing either fresh animal soft tissue samples (beef, pork) and a water reference or tissue equivalent plastic materials was designed and irradiated in a clinical proton therapy facility. Dosimetric polymer gel was positioned downstream of the samples to obtain a three-dimensional proton range distribution with high spatial resolution. The mean proton range in gel for each tissue relative to the water sample was converted to a SPR value. Additionally, the homogeneous samples were probed with a variable water column encompassed by two ionization chambers to benchmark the SPR accuracy of the gel dosimetry. The SPR values measured with both methods were consistent with a mean deviation of 0.2%, but the gel dosimetry captured range variations up to 5 mm within individual samples. Across all fresh tissue samples the SECT approach yielded significantly greater mean absolute deviations from the SPR deduced using gel range measurements, with an average difference of 1.2%, compared to just 0.3% for the most accurate DECT-based algorithm. These results show a significant advantage of DECT over SECT for stopping power prediction in a realistic setting, and for the first time allow to compare a large set of methods under the same conditions

    Radiomic signatures of posterior fossa ependymoma: Molecular subgroups and risk profiles

    Get PDF
    BACKGROUND: The risk profile for posterior fossa ependymoma (EP) depends on surgical and molecular status [Group A (PFA) versus Group B (PFB)]. While subtotal tumor resection is known to confer worse prognosis, MRI-based EP risk-profiling is unexplored. We aimed to apply machine learning strategies to link MRI-based biomarkers of high-risk EP and also to distinguish PFA from PFB. METHODS: We extracted 1800 quantitative features from presurgical T2-weighted (T2-MRI) and gadolinium-enhanced T1-weighted (T1-MRI) imaging of 157 EP patients. We implemented nested cross-validation to identify features for risk score calculations and apply a Cox model for survival analysis. We conducted additional feature selection for PFA versus PFB and examined performance across three candidate classifiers. RESULTS: For all EP patients with GTR, we identified four T2-MRI-based features and stratified patients into high- and low-risk groups, with 5-year overall survival rates of 62% and 100%, respectively (p < 0.0001). Among presumed PFA patients with GTR, four T1-MRI and five T2-MRI features predicted divergence of high- and low-risk groups, with 5-year overall survival rates of 62.7% and 96.7%, respectively (p = 0.002). T1-MRI-based features showed the best performance distinguishing PFA from PFB with an AUC of 0.86. CONCLUSIONS: We present machine learning strategies to identify MRI phenotypes that distinguish PFA from PFB, as well as high- and low-risk PFA. We also describe quantitative image predictors of aggressive EP tumors that might assist risk-profiling after surgery. Future studies could examine translating radiomics as an adjunct to EP risk assessment when considering therapy strategies or trial candidacy

    Association between composite scores of domain-specific cognitive functions and regional patterns of atrophy and functional connectivity in the Alzheimer's disease spectrum

    Get PDF
    Background: Cognitive decline has been found to be associated with gray matter atrophy and disruption of functional neural networks in Alzheimer’s disease (AD) in structural and functional imaging (fMRI) studies. Most previous studies have used single test scores of cognitive performance among monocentric cohorts. However, cognitive domain composite scores could be more reliable than single test scores due to the reduction of measurement error. Adopting a multicentric resting state fMRI (rs-fMRI) and cognitive domain approach, we provide a comprehensive description of the structural and functional correlates of the key cognitive domains of AD. Method: We analyzed MRI, rs-fMRI and cognitive domain score data of 490 participants from an interim baseline release of the multicenter DELCODE study cohort, including 54 people with AD, 86 with Mild Cognitive Impairment (MCI), 175 with Subjective Cognitive Decline (SCD), and 175 Healthy Controls (HC) in the ADspectrum. Resulting cognitive domain composite scores (executive, visuo-spatial, memory, working memory and language) from the DELCODE neuropsychological battery (DELCODE-NP), were previously derived using confirmatory factor analysis. Statistical analyses examined the differences between diagnostic groups, and the association of composite scores with regional atrophy and network-specific functional connectivity among the patient subgroup of SCD, MCI and AD. Result: Cognitive performance, atrophy patterns and functional connectivity significantly differed between diagnostic groups in the AD-spectrum. Regional gray matter atrophy was positively associated with visuospatial and other cognitive impairments among the patient subgroup in the AD-spectrum. Except for the visual network, patterns of network-specific resting-state functional connectivity were positively associated with distinct cognitive impairments among the patient subgroup in the AD-spectrum. Conclusion: Consistent associations between cognitive domain scores and both regional atrophy and networkspecific functional connectivity (except for the visual network), support the utility of a multicentric and cognitive domain approach towards explicating the relationship between imaging markers and cognition in the AD-spectrum

    Depiction of pneumothoraces in a large animal model using x-ray dark-field radiography

    Get PDF
    The aim of this study was to assess the diagnostic value of x-ray dark-field radiography to detect pneumothoraces in a pig model. Eight pigs were imaged with an experimental grating-based large-animal dark-field scanner before and after induction of a unilateral pneumothorax. Image contrast-to-noise ratios between lung tissue and the air-filled pleural cavity were quantified for transmission and dark-field radiograms. The projected area in the object plane of the inflated lung was measured in dark-field images to quantify the collapse of lung parenchyma due to a pneumothorax. Means and standard deviations for lung sizes and signal intensities from dark-field and transmission images were tested for statistical significance using Student’s two-tailed t-test for paired samples. The contrast-to-noise ratio between the air-filled pleural space of lateral pneumothoraces and lung tissue was significantly higher in the dark-field (3.65 ± 0.9) than in the transmission images (1.13 ± 1.1; p = 0.002). In case of dorsally located pneumothoraces, a significant decrease (−20.5%; p > 0.0001) in the projected area of inflated lung parenchyma was found after a pneumothorax was induced. Therefore, the detection of pneumothoraces in x-ray dark-field radiography was facilitated compared to transmission imaging in a large animal model
    • …
    corecore