14 research outputs found
Associations between regular cannabis use and brain resting-state functional connectivity in adolescents and adults
Background/aim: Cannabis use is highly prevalent in adolescents; however, little is known about its effects on adolescent brain function. Method: Resting-state functional magnetic resonance imaging was used in matched groups of regular cannabis users (N = 70, 35 adolescents: 16–17 years old, 35 adults: 26–29 years old) and non-regular-using controls (N = 70, 35 adolescents/35 adults). Pre-registered analyses examined the connectivity of seven major cortical and sub-cortical brain networks (default mode network, executive control network (ECN), salience network, hippocampal network and three striatal networks) using seed-based analysis methods with cross-sectional comparisons between user groups and age groups. Results: The regular cannabis use group (across both age groups), relative to controls, showed localised increases in connectivity only in the ECN analysis. All networks showed localised connectivity differences based on age group, with the adolescents generally showing weaker connectivity than adults, consistent with the developmental effects. Mean connectivity across entire network regions of interest (ROIs) was also significantly decreased in the ECN in adolescents. However, there were no significant interactions found between age group and user group in any of the seed-based or ROI analyses. There were also no associations found between cannabis use frequency and any of the derived connectivity measures. Conclusion: Regular cannabis use is associated with changes in connectivity of the ECN, which may reflect allostatic or compensatory changes in response to regular cannabis intoxication. However, these associations were not significantly different in adolescents compared to adults.</p
Associations between regular cannabis use and brain resting-state functional connectivity in adolescents and adults
BACKGROUND/AIM: Cannabis use is highly prevalent in adolescents; however, little is known about its effects on adolescent brain function. METHOD: Resting-state functional magnetic resonance imaging was used in matched groups of regular cannabis users (N = 70, 35 adolescents: 16-17 years old, 35 adults: 26-29 years old) and non-regular-using controls (N = 70, 35 adolescents/35 adults). Pre-registered analyses examined the connectivity of seven major cortical and sub-cortical brain networks (default mode network, executive control network (ECN), salience network, hippocampal network and three striatal networks) using seed-based analysis methods with cross-sectional comparisons between user groups and age groups. RESULTS: The regular cannabis use group (across both age groups), relative to controls, showed localised increases in connectivity only in the ECN analysis. All networks showed localised connectivity differences based on age group, with the adolescents generally showing weaker connectivity than adults, consistent with the developmental effects. Mean connectivity across entire network regions of interest (ROIs) was also significantly decreased in the ECN in adolescents. However, there were no significant interactions found between age group and user group in any of the seed-based or ROI analyses. There were also no associations found between cannabis use frequency and any of the derived connectivity measures. CONCLUSION: Regular cannabis use is associated with changes in connectivity of the ECN, which may reflect allostatic or compensatory changes in response to regular cannabis intoxication. However, these associations were not significantly different in adolescents compared to adults
Vaccination with Ad5 Vectors Expands Ad5-Specific CD8+ T Cells without Altering Memory Phenotype or Functionality
Adenoviral (Ad) vaccine vectors represent both a vehicle to present a novel antigen to the immune system as well as restimulation of immune responses against the Ad vector itself. To what degree Ad-specific CD8(+) T cells are restimulated by Ad vector vaccination is unclear, although such knowledge would be important as vector-specific CD8(+) T cell expansion could potentially further limit Ad vaccine efficacy beyond Ad-specific neutralizing antibody alone.Here we addressed this issue by measuring human Adenovirus serotype 5 (Ad5)-specific CD8(+) T cells in recipients of the Merck Ad5 HIV-1 vaccine vector before, during, and after vaccination by multicolor flow cytometry. Ad5-specific CD8(+) T-cells were detectable in 95% of subjects prior to vaccination, and displayed primarily an effector-type functional profile and phenotype. Peripheral blood Ad5-specific CD8(+) T-cell numbers expanded after Ad5-HIV vaccination in all subjects, but differential expansion kinetics were noted in some baseline Ad5-neutralizing antibody (Ad5 nAb) seronegative subjects compared to baseline Ad5 nAb seropositive subjects. However, in neither group did vaccination alter polyfunctionality, mucosal targeting marker expression, or memory phenotype of Ad5-specific CD8(+) T-cells.These data indicate that repeat Ad5-vector administration in humans expands Ad5-specific CD8(+) T-cells without overtly affecting their functional capacity or phenotypic properties. This is a secondary analysis of samples collected during the 016 trial. Results of the Merck 016 trial safety and immunogenicity have been previously published in the journal of clinical infectious diseases [1].ClinicalTrials.gov NCT00849680[http://www.clinicaltrials.gov/show/NCT00849680]
Acute effects of different types of cannabis on young adult and adolescent resting-state brain networks
Adolescence is a time of rapid neurodevelopment and the endocannabinoid system is particularly prone to change during this time. Cannabis is a commonly used drug with a particularly high prevalence of use among adolescents. The two predominant phytocannabinoids are Delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), which affect the endocannabinoid system. It is unknown whether this period of rapid development makes adolescents more or less vulnerable to the effects of cannabis on brain-network connectivity, and whether CBD may attenuate the effects of THC. Using fMRI, we explored the impact of vaporized cannabis (placebo, THC: 8 mg/75 kg, THC + CBD: 8 mg/75 kg THC & 24 mg/75 kg CBD) on resting-state networks in groups of semi-regular cannabis users (usage frequency between 0.5 and 3 days/week), consisting of 22 adolescents (16-17 years) and 24 young adults (26-29 years) matched for cannabis use frequency. Cannabis caused reductions in within-network connectivity in the default mode (F[2,88] = 3.97, P = 0.022, η² = 0.018), executive control (F[2,88] = 18.62, P < 0.001, η² = 0.123), salience (F[2,88] = 12.12, P < 0.001, η² = 0.076), hippocampal (F[2,88] = 14.65, P < 0.001, η² = 0.087), and limbic striatal (F[2,88] = 16.19, P < 0.001, η² = 0.102) networks compared to placebo. Whole-brain analysis showed cannabis significantly disrupted functional connectivity with cortical regions and the executive control, salience, hippocampal, and limbic striatal networks compared to placebo. CBD did not counteract THC's effects and further reduced connectivity both within networks and the whole brain. While age-related differences were observed, there were no interactions between age group and cannabis treatment in any brain network. Overall, these results challenge the assumption that CBD can make cannabis safer, as CBD did not attenuate THC effects (and in some cases potentiated them); furthermore, they show that cannabis causes similar disruption to resting-state connectivity in the adolescent and adult brain.</p
Function of major cortical and striatal resting-state networks in adult and adolescent cannabis users
A pre-registration of a plan for cross-sectional analysis of resting-state fMRI data from the baseline scans of the CannTeen project
MRI evidence for preserved regulation of intracranial pressure in patients with cerebral arteriovenous malformations
The purpose of this study was to investigate intracranial pressure and associated hemo- and hydrodynamic parameters in patients with cerebral arteriovenous malformations AVMs.
Thirty consecutive patients with arteriovenous malformations (median age 38.7 years, 27/30 previously treated with radiosurgery) and 30 age- and gender-matched healthy controls were investigated on a 3.0T MR scanner. Nidus volume was quantified on dynamic MR angiography. Total arterial cerebral blood flow (tCBF), venous outflow as well as aqueductal and craniospinal stroke volumes were obtained using velocity-encoded cine-phase contrast MRI. Intracranial volume change during the cardiac cycle was calculated and intracranial pressure (ICP) was derived from systolic intracranial volume change (ICVC) and pulse pressure gradient.
TCBF was significantly higher in AVM patients as compared to healthy controls (median 799 vs. 692mL/min, p=0.007). There was a trend for venous flow to be increased in both the ipsilateral internal jugular vein (IJV, 282 vs. 225mL/min, p=0.16), and in the contralateral IJV (322 vs. 285mL/min, p=0.09), but not in secondary veins. There was no significant difference in median ICP between AVM patients and control subjects (6.9 vs. 8.6mmHg, p=0.30) and ICP did not correlate with nidus volume in AVM patients (ρ=−0.06, p=0.74). There was a significant positive correlation between tCBF and craniospinal CSF stroke volume (ρ=0.69, p=0.02).
The elevated cerebral blood flow in patients with AVMs is drained through an increased flow in IJVs but not secondary veins. ICP is maintained within ranges of normal and does not correlate with nidus volume
Women and men with distressing low sexual desire exhibit sexually dimorphic brain processing
Abstract Distressing low sexual desire, termed Hypoactive Sexual Desire Disorder (HSDD), affects approximately 10% of women and 8% of men. In women, the ‘top-down’ theory of HSDD describes hyperactivity in higher-level cognitive brain regions, suppressing lower-level emotional/sexual brain areas. However, it is unknown how this neurofunctional disturbance compares to HSDD in men. To investigate this, we employed task-based functional MRI in 32 women and 32 men with HSDD to measure sexual-brain processing during sexual versus non-sexual videos, as well as psychometric questionnaires to assess sexual desire/arousal. We demonstrate that women had greater activation in higher-level and lower-level brain regions, compared to men. Indeed, women who had greater hypothalamic activation in response to sexual videos, reported higher psychometric scores in the evaluative (r = 0.55, P = 0.001), motivational (r = 0.56, P = 0.003), and physiological (r = 0.57, P = 0.0006) domains of sexual desire and arousal after watching the sexual videos in the scanner. By contrast, no similar correlations were observed in men. Taken together, this is the first direct comparison of the neural correlates of distressing low sexual desire between women and men. The data supports the ‘top-down’ theory of HSDD in women, whereas in men HSDD appears to be associated with different neurofunctional processes