130 research outputs found
Festschrift for Prof. Şefik Süzer's 60th birthday
[No abstract available
Stability of Monomer-Dimer Piles
We measure how strong, localized contact adhesion between grains affects the
maximum static critical angle, theta_c, of a dry sand pile. By mixing dimer
grains, each consisting of two spheres that have been rigidly bonded together,
with simple spherical monomer grains, we create sandpiles that contain strong
localized adhesion between a given particle and at most one of its neighbors.
We find that tan(theta_c) increases from 0.45 to 1.1 and the grain packing
fraction, Phi, decreases from 0.58 to 0.52 as we increase the relative number
fraction of dimer particles in the pile, nu_d, from 0 to 1. We attribute the
increase in tan(theta_c(nu_d)) to the enhanced stability of dimers on the
surface, which reduces the density of monomers that need to be accomodated in
the most stable surface traps. A full characterization and geometrical
stability analysis of surface traps provides a good quantitative agreement
between experiment and theory over a wide range of nu_d, without any fitting
parameters.Comment: 11 pages, 12 figures consisting of 21 eps files, submitted to PR
Velocity Correlations in Dense Gravity Driven Granular Chute Flow
We report numerical results for velocity correlations in dense,
gravity-driven granular flow down an inclined plane. For the grains on the
surface layer, our results are consistent with experimental measurements
reported by Pouliquen. We show that the correlation structure within planes
parallel to the surface persists in the bulk. The two-point velocity
correlation function exhibits exponential decay for small to intermediate
values of the separation between spheres. The correlation lengths identified by
exponential fits to the data show nontrivial dependence on the averaging time
\dt used to determine grain velocities. We discuss the correlation length
dependence on averaging time, incline angle, pile height, depth of the layer,
system size and grain stiffness, and relate the results to other length scales
associated with the rheology of the system. We find that correlation lengths
are typically quite small, of the order of a particle diameter, and increase
approximately logarithmically with a minimum pile height for which flow is
possible, \hstop, contrary to the theoretical expectation of a proportional
relationship between the two length scales.Comment: 21 pages, 16 figure
Finite Temperature Depinning of a Flux Line from a Nonuniform Columnar Defect
A flux line in a Type-II superconductor with a single nonuniform columnar
defect is studied by a perturbative diagrammatic expansion around an annealed
approximation. The system undergoes a finite temperature depinning transition
for the (rather unphysical) on-the-average repulsive columnar defect, provided
that the fluctuations along the axis are sufficiently large to cause some
portions of the column to become attractive. The perturbative expansion is
convergent throughout the weak pinning regime and becomes exact as the
depinning transition is approached, providing an exact determination of the
depinning temperature and the divergence of the localization length.Comment: RevTeX, 4 pages, 3 EPS figures embedded with epsf.st
Anisotropic Scaling in Threshold Critical Dynamics of Driven Directed Lines
The dynamical critical behavior of a single directed line driven in a random
medium near the depinning threshold is studied both analytically (by
renormalization group) and numerically, in the context of a Flux Line in a
Type-II superconductor with a bulk current . In the absence of
transverse fluctuations, the system reduces to recently studied models of
interface depinning. In most cases, the presence of transverse fluctuations are
found not to influence the critical exponents that describe longitudinal
correlations. For a manifold with internal dimensions,
longitudinal fluctuations in an isotropic medium are described by a roughness
exponent to all orders in , and a
dynamical exponent . Transverse
fluctuations have a distinct and smaller roughness exponent
for an isotropic medium. Furthermore, their
relaxation is much slower, characterized by a dynamical exponent
, where is the
correlation length exponent. The predicted exponents agree well with numerical
results for a flux line in three dimensions. As in the case of interface
depinning models, anisotropy leads to additional universality classes. A
nonzero Hall angle, which has no analogue in the interface models, also affects
the critical behavior.Comment: 26 pages, 8 Postscript figures packed together with RevTeX 3.0
manuscript using uufiles, uses multicol.sty and epsf.sty, e-mail
[email protected] in case of problem
A Model Ground State of Polyampholytes
The ground state of randomly charged polyampholytes is conjectured to have a
structure similar to a necklace, made of weakly charged parts of the chain,
compacting into globules, connected by highly charged stretched `strings'. We
suggest a specific structure, within the necklace model, where all the neutral
parts of the chain compact into globules: The longest neutral segment compacts
into a globule; in the remaining part of the chain, the longest neutral segment
(the 2nd longest neutral segment) compacts into a globule, then the 3rd, and so
on. We investigate the size distributions of the longest neutral segments in
random charge sequences, using analytical and Monte Carlo methods. We show that
the length of the n-th longest neutral segment in a sequence of N monomers is
proportional to N/(n^2), while the mean number of neutral segments increases as
sqrt(N). The polyampholyte in the ground state within our model is found to
have an average linear size proportional to sqrt(N), and an average surface
area proportional to N^(2/3).Comment: 8 two-column pages. 5 eps figures. RevTex. Submitted to Phys. Rev.
Onset of Propagation of Planar Cracks in Heterogeneous Media
The dynamics of planar crack fronts in hetergeneous media near the critical
load for onset of crack motion are investigated both analytically and by
numerical simulations. Elasticity of the solid leads to long range stress
transfer along the crack front which is non-monotonic in time due to the
elastic waves in the medium. In the quasistatic limit with instantaneous stress
transfer, the crack front exhibits dynamic critical phenomenon, with a second
order like transition from a pinned to a moving phase as the applied load is
increased through a critical value. At criticality, the crack-front is
self-affine, with a roughness exponent . The dynamic
exponent is found to be equal to and the correlation length
exponent . These results are in good agreement with those
obtained from an epsilon expansion. Sound-travel time delays in the stress
transfer do not change the static exponents but the dynamic exponent
becomes exactly one. Real elastic waves, however, lead to overshoots in the
stresses above their eventual static value when one part of the crack front
moves forward. Simplified models of these stress overshoots are used to show
that overshoots are relevant at the depinning transition leading to a decrease
in the critical load and an apparent jump in the velocity of the crack front
directly to a non-zero value. In finite systems, the velocity also shows
hysteretic behaviour as a function of the loading. These results suggest a
first order like transition. Possible implications for real tensile cracks are
discussed.Comment: 51 pages + 20 figur
Gutenberg Richter and Characteristic Earthquake Behavior in Simple Mean-Field Models of Heterogeneous Faults
The statistics of earthquakes in a heterogeneous fault zone is studied
analytically and numerically in the mean field version of a model for a
segmented fault system in a three-dimensional elastic solid. The studies focus
on the interplay between the roles of disorder, dynamical effects, and driving
mechanisms. A two-parameter phase diagram is found, spanned by the amplitude of
dynamical weakening (or ``overshoot'') effects (epsilon) and the normal
distance (L) of the driving forces from the fault. In general, small epsilon
and small L are found to produce Gutenberg-Richter type power law statistics
with an exponential cutoff, while large epsilon and large L lead to a
distribution of small events combined with characteristic system-size events.
In a certain parameter regime the behavior is bistable, with transitions back
and forth from one phase to the other on time scales determined by the fault
size and other model parameters. The implications for realistic earthquake
statistics are discussed.Comment: 21 pages, RevTex, 6 figures (ps, eps
Dynamics and Instabilities of Planar Tensile Cracks in Heterogeneous Media
The dynamics of tensile crack fronts restricted to advance in a plane are
studied. In an ideal linear elastic medium, a propagating mode along the crack
front with a velocity slightly less than the Rayleigh wave velocity, is found
to exist. But the dependence of the effective fracture toughness on
the crack velocity is shown to destabilize the crack front if
. Short wavelength radiation due to weak random
heterogeneities leads to this instability at low velocities. The implications
of these results for the crack dynamics are discussed.Comment: 12 page
Roughness at the depinning threshold for a long-range elastic string
In this paper, we compute the roughness exponent zeta of a long-range elastic
string, at the depinning threshold, in a random medium with high precision,
using a numerical method which exploits the analytic structure of the problem
(`no-passing' theorem), but avoids direct simulation of the evolution
equations. This roughness exponent has recently been studied by simulations,
functional renormalization group calculations, and by experiments (fracture of
solids, liquid meniscus in 4He). Our result zeta = 0.390 +/- 0.002 is
significantly larger than what was stated in previous simulations, which were
consistent with a one-loop renormalization group calculation. The data are
furthermore incompatible with the experimental results for crack propagation in
solids and for a 4He contact line on a rough substrate. This implies that the
experiments cannot be described by pure harmonic long-range elasticity in the
quasi-static limit.Comment: 4 pages, 3 figure
- …