112 research outputs found

    The Origin of a Repose Angle: Kinetics of Rearrangements for Granular Materials

    Full text link
    A microstructural theory of dense granular materials is presented, based on two main ideas. Firstly, that macroscopic shear results form activated local rearrangements at a mesoscopic scale. Secondly, that the update frequency of microscopic processes is determined by granular temperature. In a shear cell, the resulting constitutive equations account for Bagnold's scaling and for the existence of a Coulomb criterion of yield. In the case of a granular flow down an inclined plane, they account for the rheology observed in recent experiments and for the temperature and velocity profiles measured numerically.Comment: submitted to PR

    Anisotropic Scaling in Threshold Critical Dynamics of Driven Directed Lines

    Full text link
    The dynamical critical behavior of a single directed line driven in a random medium near the depinning threshold is studied both analytically (by renormalization group) and numerically, in the context of a Flux Line in a Type-II superconductor with a bulk current J⃗\vec J. In the absence of transverse fluctuations, the system reduces to recently studied models of interface depinning. In most cases, the presence of transverse fluctuations are found not to influence the critical exponents that describe longitudinal correlations. For a manifold with d=4−ϵd=4-\epsilon internal dimensions, longitudinal fluctuations in an isotropic medium are described by a roughness exponent ζ∥=ϵ/3\zeta_\parallel=\epsilon/3 to all orders in ϵ\epsilon, and a dynamical exponent z∥=2−2ϵ/9+O(ϵ2)z_\parallel=2-2\epsilon/9+O(\epsilon^2). Transverse fluctuations have a distinct and smaller roughness exponent ζ⊥=ζ∥−d/2\zeta_\perp=\zeta_\parallel-d/2 for an isotropic medium. Furthermore, their relaxation is much slower, characterized by a dynamical exponent z⊥=z∥+1/νz_\perp=z_\parallel+1/\nu, where ν=1/(2−ζ∥)\nu=1/(2-\zeta_\parallel) is the correlation length exponent. The predicted exponents agree well with numerical results for a flux line in three dimensions. As in the case of interface depinning models, anisotropy leads to additional universality classes. A nonzero Hall angle, which has no analogue in the interface models, also affects the critical behavior.Comment: 26 pages, 8 Postscript figures packed together with RevTeX 3.0 manuscript using uufiles, uses multicol.sty and epsf.sty, e-mail [email protected] in case of problem

    Some rings for which the cosingular submodule of every module is a direct summand

    No full text
    The submodule Z(M) = ∩{N | M/N is small in its injective hull} was introduced by Talebi and Vanaja in 2002. A ring R is said to have property (P ) if Z(M) is a direct summand of M for every R-module M . It is shown that a commutative perfect ring R has (P ) if and only if R is semisimple. An example is given to show that this characterization is not true for noncommutative rings. We prove that if R is a commutative ring such that the class {M ∈ Mod−R | ZR(M) = 0} is closed under factor modules, then R has (P ) if and only if the ring R is von Neumann regular

    A Ball in a Groove

    Full text link
    We study the static equilibrium of an elastic sphere held in a rigid groove by gravity and frictional contacts, as determined by contact mechanics. As a function of the opening angle of the groove and the tilt of the groove with respect to the vertical, we identify two regimes of static equilibrium for the ball. In the first of these, at large opening angle or low tilt, the ball rolls at both contacts as it is loaded. This is an analog of the "elastic" regime in the mechanics of granular media. At smaller opening angles or larger tilts, the ball rolls at one contact and slides at the other as it is loaded, analogously with the "plastic" regime in the mechanics of granular media. In the elastic regime, the stress indeterminacy is resolved by the underlying kinetics of the ball response to loading.Comment: RevTeX 3.0, 4 pages, 2 eps figures included with eps

    A Model Ground State of Polyampholytes

    Full text link
    The ground state of randomly charged polyampholytes is conjectured to have a structure similar to a necklace, made of weakly charged parts of the chain, compacting into globules, connected by highly charged stretched `strings'. We suggest a specific structure, within the necklace model, where all the neutral parts of the chain compact into globules: The longest neutral segment compacts into a globule; in the remaining part of the chain, the longest neutral segment (the 2nd longest neutral segment) compacts into a globule, then the 3rd, and so on. We investigate the size distributions of the longest neutral segments in random charge sequences, using analytical and Monte Carlo methods. We show that the length of the n-th longest neutral segment in a sequence of N monomers is proportional to N/(n^2), while the mean number of neutral segments increases as sqrt(N). The polyampholyte in the ground state within our model is found to have an average linear size proportional to sqrt(N), and an average surface area proportional to N^(2/3).Comment: 8 two-column pages. 5 eps figures. RevTex. Submitted to Phys. Rev.

    Gutenberg Richter and Characteristic Earthquake Behavior in Simple Mean-Field Models of Heterogeneous Faults

    Full text link
    The statistics of earthquakes in a heterogeneous fault zone is studied analytically and numerically in the mean field version of a model for a segmented fault system in a three-dimensional elastic solid. The studies focus on the interplay between the roles of disorder, dynamical effects, and driving mechanisms. A two-parameter phase diagram is found, spanned by the amplitude of dynamical weakening (or ``overshoot'') effects (epsilon) and the normal distance (L) of the driving forces from the fault. In general, small epsilon and small L are found to produce Gutenberg-Richter type power law statistics with an exponential cutoff, while large epsilon and large L lead to a distribution of small events combined with characteristic system-size events. In a certain parameter regime the behavior is bistable, with transitions back and forth from one phase to the other on time scales determined by the fault size and other model parameters. The implications for realistic earthquake statistics are discussed.Comment: 21 pages, RevTex, 6 figures (ps, eps

    Disorder, Order, and Domain Wall Roughening in the 2d Random Field Ising Model

    Get PDF
    Ground states and domain walls are investigated with exact combinatorial optimization in two-dimensional random field Ising magnets. The ground states break into domains above a length scale that depends exponentially on the random field strength squared. For weak disorder, this paramagnetic structure has remnant long-range order of the percolation type. The domain walls are super-rough in ordered systems with a roughness exponent ζ\zeta close to 6/5. The interfaces exhibit rare fluctuations and multiscaling reminiscent of some models of kinetic roughening and hydrodynamic turbulence.Comment: to be published in Phys.Rev.E/Rapid.Com

    On the Fibonacci universality classes in nonlinear fluctuating hydrodynamics

    Full text link
    We present a lattice gas model that without fine tuning of parameters is expected to exhibit the so far elusive modified Kardar-Parisi-Zhang (KPZ) universality class. To this end, we review briefly how non-linear fluctuating hydrodynamics in one dimension predicts that all dynamical universality classes in its range of applicability belong to an infinite discrete family which we call Fibonacci family since their dynamical exponents are the Kepler ratios zi=Fi+1/Fiz_i = F_{i+1}/F_{i} of neighbouring Fibonacci numbers FiF_i, including diffusion (z2=2z_2=2), KPZ (z3=3/2z_3=3/2), and the limiting ratio which is the golden mean z∞=(1+5)/2z_\infty=(1+\sqrt{5})/2. Then we revisit the case of two conservation laws to which the modified KPZ model belongs. We also derive criteria on the macroscopic currents to lead to other non-KPZ universality classes.Comment: 17 page

    Dislocations and the critical endpoint of the melting line of vortex line lattices

    Full text link
    We develop a theory for dislocation-mediated structural transitions in the vortex lattice which allows for a unified description of phase transitions between the three phases, the elastic vortex glass, the amorphous vortex glass, and the vortex liquid, in terms of a free energy functional for the dislocation density. The origin of a critical endpoint of the melting line at high magnetic fields, which has been recently observed experimentally, is explained.Comment: 4 pages, 1 figur

    Phase Diagram Of A Hard-sphere System In A Quenched Random Potential: A Numerical Study

    Get PDF
    We report numerical results for the phase diagram in the density-disorder plane of a hard sphere system in the presence of quenched, random, pinning disorder. Local minima of a discretized version of the Ramakrishnan-Yussouff free energy functional are located numerically and their relative stability is studied as a function of the density and the strength of disorder. Regions in the phase diagram corresponding to liquid, glassy and nearly crystalline states are mapped out, and the nature of the transitions is determined. The liquid to glass transition changes from first to second order as the strength of the disorder is increased. For weak disorder, the system undergoes a first order crystallization transition as the density is increased. Beyond a critical value of the disorder strength, this transition is replaced by a continuous glass transition. Our numerical results are compared with those of analytical work on the same system. Implications of our results for the field-temperature phase diagram of type-II superconductors are discussed.Comment: 14 pages, 10 postscript figures (included), submitted to Phys. Rev.
    • …
    corecore