5 research outputs found

    Accelerated Discovery of 3D Printing Materials Using Data-Driven Multi-Objective Optimization

    Full text link
    Additive manufacturing has become one of the forefront technologies in fabrication, enabling new products impossible to manufacture before. Although many materials exist for additive manufacturing, they typically suffer from performance trade-offs preventing them from replacing traditional manufacturing techniques. Current materials are designed with inefficient human-driven intuition-based methods, leaving them short of optimal solutions. We propose a machine learning approach to accelerate the discovery of additive manufacturing materials with optimal trade-offs in mechanical performance. A multi-objective optimization algorithm automatically guides the experimental design by proposing how to mix primary formulations to create better-performing materials. The algorithm is coupled with a semi-autonomous fabrication platform to significantly reduce the number of performed experiments and overall time to solution. Without any prior knowledge of the primary formulations, the proposed methodology autonomously uncovers twelve optimal composite formulations and enlarges the discovered performance space 288 times after only 30 experimental iterations. This methodology could easily be generalized to other material formulation problems and enable completely automated discovery of a wide variety of material designs

    Polygrammar: Grammar for Digital Polymer Representation and Generation

    No full text
    Polymers are widely studied materials with diverse properties and applications determined by molecular structures. It is essential to represent these structures clearly and explore the full space of achievable chemical designs. However, existing approaches cannot offer comprehensive design models for polymers because of their inherent scale and structural complexity. Here, a parametric, context-sensitive grammar designed specifically for polymers (PolyGrammar) is proposed. Using the symbolic hypergraph representation and 14 simple production rules, PolyGrammar can represent and generate all valid polyurethane structures. An algorithm is presented to translate any polyurethane structure from the popular Simplified Molecular-Input Line-entry System (SMILES) string format into the PolyGrammar representation. The representative power of PolyGrammar is tested by translating a dataset of over 600 polyurethane samples collected from the literature. Furthermore, it is shown that PolyGrammar can be easily extended to other copolymers and homopolymers. By offering a complete, explicit representation scheme and an explainable generative model with validity guarantees, PolyGrammar takes an essential step toward a more comprehensive and practical system for polymer discovery and exploration. As the first bridge between formal languages and chemistry, PolyGrammar also serves as a critical blueprint to inform the design of similar grammars for other chemistries, including organic and inorganic molecules

    Closed-Loop Control of Direct Ink Writing via Reinforcement Learning

    Get PDF
    Enabling additive manufacturing to employ a wide range of novel, functional materials can be a major boost to this technology. However, making such materials printable requires painstaking trial-and-error by an expert operator, as they typically tend to exhibit peculiar rheological or hysteresis properties. Even in the case of successfully finding the process parameters, there is no guarantee of print-to-print consistency due to material differences between batches. These challenges make closed-loop feedback an attractive option where the process parameters are adjusted on-the-fly. There are several challenges for designing an efficient controller: the deposition parameters are complex and highly coupled, artifacts occur after long time horizons, simulating the deposition is computationally costly, and learning on hardware is intractable. In this work, we demonstrate the feasibility of learning a closed-loop control policy for additive manufacturing using reinforcement learning. We show that approximate, but efficient, numerical simulation is sufficient as long as it allows learning the behavioral patterns of deposition that translate to real-world experiences. In combination with reinforcement learning, our model can be used to discover control policies that outperform baseline controllers. Furthermore, the recovered policies have a minimal sim-to-real gap. We showcase this by applying our control policy in-vivo on a single-layer, direct ink writing printer

    Accelerated discovery of 3D printing materials using data-driven multiobjective optimization

    No full text
    Machine learning can aid the discovery of useful 3D printing material formulations.</jats:p

    Highly Nonlinear Chalcogenide Glass Waveguides for All-optical Signal Processing

    No full text
    I describe the development of highly nonlinear chalcogenide glass waveguides for photonics and their application as nonlinear optical devices for high speed processing and monitoring of telecommunications signals.Accepted versio
    corecore