132 research outputs found

    Striped superconductors in the extended Hubbard model

    Full text link
    We present a minimal model of a doped Mott insulator that simultaneously supports antiferromagnetic stripes and d-wave superconductivity. We explore the implications for the global phase diagram of the superconducting cuprates. At the unrestricted mean-field level, the various phases of the cuprates, including weak and strong pseudogap phases, and two different types of superconductivity in the underdoped and the overdoped regimes, find a natural interpretation. We argue that on the underdoped side, the superconductor is intrinsically inhomogeneous -- striped coexistence of of superconductivity and magnetism -- and global phase coherence is achieved through Josephson-like coupling of the superconducting stripes. On the overdoped side, the state is overall homogeneous and the superconductivity is of the classical BCS type.Comment: 5 pages, 3 eps figures. Effect of t' on stripe filling + new references are adde

    Quantum Phase Diagram of the t-Jz Chain Model

    Full text link
    We present the quantum phase diagram of the one-dimensional tt-JzJ_z model for arbitrary spin (integer or half-integer) and sign of the spin-spin interaction JzJ_z, using an {\it exact} mapping to a spinless fermion model that can be solved {\it exactly} using the Bethe ansatz. We discuss its superconducting phase as a function of hole doping ν\nu. Motivated by the new paradigm of high temperature superconductivity, the stripe phase, we also consider the effect the antiferromagnetic background has on the tt-JzJ_z chain intended to mimic the stripe segments.Comment: 4 pages, 2 figure

    Origem, disseminação, morfologia e fenologia.

    Get PDF
    Origem e disseminação; Morfologia: Semente, Talo e coroa, Folha, Flor, Desenvolvimento floral e polinização, Fruto; Fenologi

    Electron-Doped Manganese Perovskites: The Polaronic State

    Full text link
    Using the Lanczos method in linear chains we study the ground state of the double exchange model including an antiferromagnetic super-exchange in the low concentration limit. We find that this ground state is always inhomogeneous, containig ferromagnetic polarons. The extention of the polaron spin distortion, the dispersion relation and their trapping by impurities, are studied for diferent values of the super exchange interaction and magnetic field. We also find repulsive polaron polaron interaction.Comment: 4 pages, 6 embedded figure

    Innovación de educación emocional en el ocio educativo: el Método La Granja

    Get PDF
    This paper presents an innovative methodology in the emotional education field, La Granja, which was developed during a summer camp celebrated in 2017 in Santa María de Palautordera (Barcelona-Spain). It is a non-formal education experience proposed to promote learning from the emotions and experiences. The main goal is to assess the effect of this method on 127 children, between 8 and 14 years of age, in terms of improving their emotional competencies, as well as their perception of the usefulness of what they have learned. It follows a pragmatic paradigm that combines data collected by different approaches. It includes the application of the Emotional Development Questionnaire (CDE-9-13 and CDE-SEC, of the GROP) before and at the end of the summer camp, plus the ad hoc survey with open questions as post-test. In the global emotional competence, as well as its five dimensions: awareness, emotional regulation, emotional autonomy, social competencies, and life and wellbeing competencies, the scores increase, after their participation in the summer camp. These differences were significant in all cases except in the last dimension. According to the lexicometric analysis and the content of the open questions, there are coincidences between both quantitative observations and the meaning given to the experience in terms of emotional competencies. The most relevant discussion and conclusions are based on the importance of reflection as a learning enhancer, the duration and intensity of the interventions and the alignment of all the resources used that interact synergistically around the achievement of the objectives, topics broadly included in the scientific literature

    Charge dynamics in the Mott insulating phase of the ionic Hubbard model

    Full text link
    We extend to charge and bond operators the transformation that maps the ionic Hubbard model at half filling onto an effective spin Hamiltonian. Using these operators we calculate the amplitude of the charge density wave in different dimensions. In one dimension, the charge-charge correlations at large distance d decay as 1/(d^3 ln^{3/2}d), in spite of the presence of a charge gap, as a consequence of remaining charge-spin coupling. Bond-bond correlations decay as (-1)^d 1/(d ln^{3/2}d) as in the usual Hubbard model.Comment: 4 pages, no figures, submitted to Phys. Rev. B printing errors corrected and some clarifications adde

    Exact ground states for the four-electron problem in a two-dimensional finite Hubbard square system

    Full text link
    We present exact explicit analytical results describing the exact ground state of four electrons in a two dimensional square Hubbard cluster containing 16 sites taken with periodic boundary conditions. The presented procedure, which works for arbitrary even particle number and lattice sites, is based on explicitly given symmetry adapted base vectors constructed in r-space. The Hamiltonian acting on these states generates a closed system of 85 linear equations providing by its minimum eigenvalue the exact ground state of the system. The presented results, described with the aim to generate further creative developments, not only show how the ground state can be exactly obtained and what kind of contributions enter in its construction, but emphasize further characteristics of the spectrum. On this line i) possible explications are found regarding why weak coupling expansions often provide a good approximation for the Hubbard model at intermediate couplings, or ii) explicitly given low lying energy states of the kinetic energy, avoiding double occupancy, suggest new roots for pairing mechanism attracting decrease in the kinetic energy, as emphasized by kinetic energy driven superconductivity theories.Comment: 37 pages, 18 figure

    Spectral density for a hole in an antiferromagnetic stripe phase

    Full text link
    Using variational trial wave function based on the string picture we study the motion of a single mobile hole in the stripe phase of the doped antiferromagnet. The holes within the stripes are taken to be static, the undoped antiferromagnetic domains in between the hole stripes are assumed to have alternating staggered magnetization, as is suggested by neutron scattering experiments. The system is described by the t-t'-t''-J model with realistic parameters and we compute the single particle spectral density.Comment: RevTex-file, 9 PRB pages with 15 .eps and .gif files. To appear in PRB. Hardcopies of figures (or the entire manuscript) can be obtained by e-mail request to: [email protected]

    Charge and spin excitations of insulating lamellar copper oxides

    Full text link
    A consistent description of low-energy charge and spin responses of the insulating Sr_2CuO_2Cl_2 lamellar system is found in the framework of a one-band Hubbard model which besides UU includes hoppings up to 3^{rd} nearest-neighbors. By combining mean-field calculations, exact diagonalization (ED) results, and Quantum Monte Carlo simulations (QMC), we analyze both charge and spin degrees of freedom responses as observed by optical conductivity, ARPES, Raman and inelastic neutron scattering experiments. Within this effective model, long-range hopping processes flatten the quasiparticle band around (0,π)(0,\pi). We calculate also the non-resonant A_{1g} and B_{1g} Raman profiles and show that the latter is composed by two main features, which are attributed to 2- and 4-magnon scattering.Comment: 6 pages, 3 figures, To be published in PRB (july
    corecore