15,237 research outputs found
Determining parameters of the Neugebauer family of vacuum spacetimes in terms of data specified on the symmetry axis
We express the complex potential E and the metrical fields omega and gamma of
all stationary axisymmetric vacuum spacetimes that result from the application
of two successive quadruple-Neugebauer (or two double-Harrison) transformations
to Minkowski space in terms of data specified on the symmetry axis, which are
in turn easily expressed in terms of multipole moments. Moreover, we suggest
how, in future papers, we shall apply our approach to do the same thing for
those vacuum solutions that arise from the application of more than two
successive transformations, and for those electrovac solutions that have axis
data similar to that of the vacuum solutions of the Neugebauer family.
(References revised following response from referee.)Comment: 18 pages (REVTEX
Microscopic approach to pion-nucleus dynamics
Elastic scattering of pions from finite nuclei is investigated utilizing a
contemporary, momentum--space first--order optical potential combined with
microscopic estimates of second--order corrections. The calculation of the
first--order potential includes:\ \ (1)~full Fermi--averaging integration
including both the delta propagation and the intrinsic nonlocalities in the
- amplitude, (2)~fully covariant kinematics, (3)~use of invariant
amplitudes which do not contain kinematic singularities, and (4)~a
finite--range off--shell pion--nucleon model which contains the nucleon pole
term. The effect of the delta--nucleus interaction is included via the mean
spectral--energy approximation. It is demonstrated that this produces a
convergent perturbation theory in which the Pauli corrections (here treated as
a second--order term) cancel remarkably against the pion true absorption terms.
Parameter--free results, including the delta--nucleus shell--model potential,
Pauli corrections, pion true absorption, and short--range correlations are
presented. (2 figures available from authors)Comment: 13 page
Fully Electrified Neugebauer Spacetimes
Generalizing a method presented in an earlier paper, we express the complex
potentials E and Phi of all stationary axisymmetric electrovac spacetimes that
correspond to axis data of the form E(z,0) = (U-W)/(U+W) , Phi(z,0) = V/(U+W) ,
where U = z^{2} + U_{1} z + U_{2} , V = V_{1} z + V_{2} , W = W_{1} z + W_{2} ,
in terms of the complex parameters U_{1}, V_{1}, W_{1}, U_{2}, V_{2} and W_{2},
that are directly associated with the various multipole moments. (Revised to
clarify certain subtle points.)Comment: 25 pages, REVTE
Long-Time Behavior of Velocity Autocorrelation Function for Interacting Particles in a Two-Dimensional Disordered System
The long-time behavior of the velocity autocorrelation function (VACF) is
investigated by the molecular dynamics simulation of a two-dimensional system
which has both a many-body interaction and a random potential. With
strengthening the random potential by increasing the density of impurities, a
crossover behavior of the VACF is observed from a positive tail, which is
proportional to t^{-1}, to a negative tail, proportional to -t^{-2}. The latter
tail exists even when the density of particles is the same order as the density
of impurities. The behavior of the VACF in a nonequilibrium steady state is
also studied. In the linear response regime the behavior is similar to that in
the equilibrium state, whereas it changes drastically in the nonlinear response
regime.Comment: 12 pages, 5 figure
Polaronic state and nanometer-scale phase separation in colossal magnetoresistive manganites
High resolution topographic images obtained by scanning tunneling microscope
in the insulating state of Pr0.68Pb0.32MnO3 single crystals showed regular
stripe-like or zigzag patterns on a width scale of 0.4 - 0.5 nm confirming a
high temperature polaronic state. Spectroscopic studies revealed inhomogeneous
maps of zero-bias conductance with small patches of metallic clusters on length
scale of 2 - 3 nm only within a narrow temperature range close to the
metal-insulator transition. The results give a direct observation of polarons
in the insulating state, phase separation of nanometer-scale metallic clusters
in the paramagnetic metallic state, and a homogeneous ferromagnetic state
Linearized model Fokker-Planck collision operators for gyrokinetic simulations. II. Numerical implementation and tests
A set of key properties for an ideal dissipation scheme in gyrokinetic
simulations is proposed, and implementation of a model collision operator
satisfying these properties is described. This operator is based on the exact
linearized test-particle collision operator, with approximations to the
field-particle terms that preserve conservation laws and an H-Theorem. It
includes energy diffusion, pitch-angle scattering, and finite Larmor radius
effects corresponding to classical (real-space) diffusion. The numerical
implementation in the continuum gyrokinetic code GS2 is fully implicit and
guarantees exact satisfaction of conservation properties. Numerical results are
presented showing that the correct physics is captured over the entire range of
collisionalities, from the collisionless to the strongly collisional regimes,
without recourse to artificial dissipation.Comment: 13 pages, 8 figures, submitted to Physics of Plasmas; typos fixe
Heat conduction in the diatomic Toda lattice revisited
The problem of the diverging thermal conductivity in one-dimensional (1-D)
lattices is considered. By numerical simulations, it is confirmed that the
thermal conductivity of the diatomic Toda lattice diverges, which is opposite
to what one has believed before. Also the diverging exponent is found to be
almost the same as the FPU chain. It is reconfirmed that the diverging thermal
conductivity is universal in 1-D systems where the total momentum preserves.Comment: 3 pages, 3 figures. To appear in Phys. Rev.
Nontrivial Velocity Distributions in Inelastic Gases
We study freely evolving and forced inelastic gases using the Boltzmann
equation. We consider uniform collision rates and obtain analytical results
valid for arbitrary spatial dimension d and arbitrary dissipation coefficient
epsilon. In the freely evolving case, we find that the velocity distribution
decays algebraically, P(v,t) ~ v^{-sigma} for sufficiently large velocities. We
derive the exponent sigma(d,epsilon), which exhibits nontrivial dependence on
both d and epsilon, exactly. In the forced case, the velocity distribution
approaches a steady-state with a Gaussian large velocity tail.Comment: 4 pages, 1 figur
On a kinetic model for a simple market economy
In this paper, we consider a simple kinetic model of economy involving both
exchanges between agents and speculative trading. We show that the kinetic
model admits non trivial quasi-stationary states with power law tails of Pareto
type. In order to do this we consider a suitable asymptotic limit of the model
yielding a Fokker-Planck equation for the distribution of wealth among
individuals. For this equation the stationary state can be easily derived and
shows a Pareto power law tail. Numerical results confirm the previous analysis
- …