10,782 research outputs found
Design principles of hardware-based phong shading and bump-mapping
The VISA+ hardware architecture is the first of a new generation of graphics accelerators designed primarily to render bump-, texture-, environment- and environment-bump-mapped polygons. This paper presents examples of the main graphical capabilities and discusses methods and simplifications used to create high quality images. One of the key concepts in the VISA+ design, the use of reflectance cubes, is predestined for environment mapping. In combination with bump- and texture-mapping it shows the strength of our new architecture. Furthermore it justifies some of the decisions made during simulation and development of the complex VISA+ architecture
Sleep-amount differentially affects fear-processing neural circuitry in pediatric anxiety: A preliminary fMRI investigation.
Insufficient sleep, as well as the incidence of anxiety disorders, both peak during adolescence. While both conditions present perturbations in fear-processing-related neurocircuitry, it is unknown whether these neurofunctional alterations directly link anxiety and compromised sleep in adolescents. Fourteen anxious adolescents (AAs) and 19 healthy adolescents (HAs) were compared on a measure of sleep amount and neural responses to negatively valenced faces during fMRI. Group differences in neural response to negative faces emerged in the dorsal anterior cingulate cortex (dACC) and the hippocampus. In both regions, correlation of sleep amount with BOLD activation was positive in AAs, but negative in HAs. Follow-up psychophysiological interaction (PPI) analyses indicated positive connectivity between dACC and dorsomedial prefrontal cortex, and between hippocampus and insula. This connectivity was correlated negatively with sleep amount in AAs, but positively in HAs. In conclusion, the presence of clinical anxiety modulated the effects of sleep-amount on neural reactivity to negative faces differently among this group of adolescents, which may contribute to different clinical significance and outcomes of sleep disturbances in healthy adolescents and patients with anxiety disorders
Recommended from our members
Phagosome-lysosome fusion is a calcium-independent event in macrophages.
Phagosome-lysosome membrane fusion is a highly regulated event that is essential for intracellular killing of microorganisms. Functionally, it represents a form of polarized regulated secretion, which is classically dependent on increases in intracellular ionized calcium ([Ca2+]i). Indeed, increases in [Ca2+]i are essential for phagosome-granule (lysosome) fusion in neutrophils and for lysosomal fusion events that mediate host cell invasion by Trypanosoma cruzi trypomastigotes. Since several intracellular pathogens survive in macrophage phagosomes that do not fuse with lysosomes, we examined the regulation of phagosome-lysosome fusion in macrophages. Macrophages (M phi) were treated with 12.5 microM bis-(2-amino-S-methylphenoxy) ethane-N,N,N',N',-tetraacetic acid tetraacetoxymethyl ester (MAPT/AM), a cell-permeant calcium chelator which reduced resting cytoplasmic [Ca2+]; from 80 nM to < or = 20 nM and completely blocked increases in [Ca2+]i in response to multiple stimuli, even in the presence of extracellular calcium. Subsequently, M phi phagocytosed serum-opsonized zymosan, staphylococci, or Mycobacterium bovis. Microbes were enumerated by 4',6-diamidino-2-phenylindole, dihydrochloride (DAPI) staining, and phagosome-lysosome fusion was scored using both lysosome-associated membrane protein (LAMP-1) as a membrane marker and rhodamine dextran as a content marker for lysosomes. Confirmation of phagosome-lysosome fusion by electron microscopy validated the fluorescence microscopy findings. We found that phagosome-lysosome fusion in M phi occurs noramlly at very low [Ca2+]i (< or = 20 nM). Kinetic analysis showed that in M phi none of the steps leading from particle binding to eventual phagosome-lysosome fusion are regulated by [Ca2+]i in a rate-limiting way. Furthermore, confocal microscopy revealed no difference in the intensity of LAMP-1 immunofluorescence in phagolysosome membranes in calcium-buffered vs. control macrophages. We conclude that neither membrane recognition nor fusion events in the phagosomal pathway in macrophages are dependent on or regulated by calcium
MEXIT: Maximal un-coupling times for stochastic processes
Classical coupling constructions arrange for copies of the \emph{same} Markov
process started at two \emph{different} initial states to become equal as soon
as possible. In this paper, we consider an alternative coupling framework in
which one seeks to arrange for two \emph{different} Markov (or other
stochastic) processes to remain equal for as long as possible, when started in
the \emph{same} state. We refer to this "un-coupling" or "maximal agreement"
construction as \emph{MEXIT}, standing for "maximal exit". After highlighting
the importance of un-coupling arguments in a few key statistical and
probabilistic settings, we develop an explicit \MEXIT construction for
stochastic processes in discrete time with countable state-space. This
construction is generalized to random processes on general state-space running
in continuous time, and then exemplified by discussion of \MEXIT for Brownian
motions with two different constant drifts.Comment: 28 page
A short note on the nested-sweep polarized traces method for the 2D Helmholtz equation
We present a variant of the solver in Zepeda-N\'u\~nez and Demanet (2014),
for the 2D high-frequency Helmholtz equation in heterogeneous acoustic media.
By changing the domain decomposition from a layered to a grid-like partition,
this variant yields improved asymptotic online and offline runtimes and a lower
memory footprint. The solver has online parallel complexity that scales
\emph{sub linearly} as , where is
the number of volume unknowns, and is the number of processors, provided
that . The variant in Zepeda-N\'u\~nez and Demanet
(2014) only afforded . Algorithmic scalability is a
prime requirement for wave simulation in regimes of interest for geophysical
imaging.Comment: 5 pages, 5 figure
Microtubule dynamics depart from wormlike chain model
Thermal shape fluctuations of grafted microtubules were studied using high
resolution particle tracking of attached fluorescent beads. First mode
relaxation times were extracted from the mean square displacement in the
transverse coordinate. For microtubules shorter than 10 um, the relaxation
times were found to follow an L^2 dependence instead of L^4 as expected from
the standard wormlike chain model. This length dependence is shown to result
from a complex length dependence of the bending stiffness which can be
understood as a result of the molecular architecture of microtubules. For
microtubules shorter than 5 um, high drag coefficients indicate contributions
from internal friction to the fluctuation dynamics.Comment: 4 pages, 4 figures. Updated content, added reference, corrected typo
Localization of bosonic atoms by fermionic impurities in a 3d optical lattice
We observe a localized phase of ultracold bosonic quantum gases in a
3-dimensional optical lattice induced by a small contribution of fermionic
atoms acting as impurities in a Fermi-Bose quantum gas mixture. In particular
we study the dependence of this transition on the fermionic 40K impurity
concentration by a comparison to the corresponding superfluid to Mott insulator
transition in a pure bosonic 87Rb gas and find a significant shift in the
transition parameter. The observed shift is larger than expected based on a
mean-field argument, which is a strong indication that disorder-related effects
play a significant role.Comment: 4 pages, 4 figure
Controlling quantum systems by embedded dynamical decoupling schemes
A dynamical decoupling method is presented which is based on embedding a
deterministic decoupling scheme into a stochastic one. This way it is possible
to combine the advantages of both methods and to increase the suppression of
undesired perturbations of quantum systems significantly even for long
interaction times. As a first application the stabilization of a quantum memory
is discussed which is perturbed by one-and two-qubit interactions
- …