20,210 research outputs found

    Transport calculation of dilepton production at ultrarelativistic energies

    Get PDF
    Dilepton spectra are calculated within the microscopic transport model UrQMD and compared to data from the CERES experiment. The invariant mass spectra in the region 300 MeV < M < 600 MeV depend strongly on the mass dependence of the ρ\rho meson decay width which is not sufficiently determined by the Vector Meson Dominance model. A consistent explanation of both the recent Pb+Au data and the proton induced data can be given without additional medium effects

    Dynamic equations for three different qudits in a magnetic field

    Full text link
    A closed system of equations for the local Bloch vectors and spin correlation functions of three magnetic qudits, which are in an arbitrary, time-dependent, external magnetic field, is obtained using decomplexification of the Liouville-von Neumann equation. The algorithm of the derivation of the dynamic equations is presented. In the basis convenient for the important physical applications structure constants of algebra su(2S+1) are calculated.Comment: 11 page

    MEXIT: Maximal un-coupling times for stochastic processes

    Get PDF
    Classical coupling constructions arrange for copies of the \emph{same} Markov process started at two \emph{different} initial states to become equal as soon as possible. In this paper, we consider an alternative coupling framework in which one seeks to arrange for two \emph{different} Markov (or other stochastic) processes to remain equal for as long as possible, when started in the \emph{same} state. We refer to this "un-coupling" or "maximal agreement" construction as \emph{MEXIT}, standing for "maximal exit". After highlighting the importance of un-coupling arguments in a few key statistical and probabilistic settings, we develop an explicit \MEXIT construction for stochastic processes in discrete time with countable state-space. This construction is generalized to random processes on general state-space running in continuous time, and then exemplified by discussion of \MEXIT for Brownian motions with two different constant drifts.Comment: 28 page

    Efficient decoupling schemes with bounded controls based on Eulerian orthogonal arrays

    Get PDF
    The task of decoupling, i.e., removing unwanted interactions in a system Hamiltonian and/or couplings with an environment (decoherence), plays an important role in controlling quantum systems. There are many efficient decoupling schemes based on combinatorial concepts like orthogonal arrays, difference schemes and Hadamard matrices. So far these (combinatorial) decoupling schemes have relied on the ability to effect sequences of instantaneous, arbitrarily strong control Hamiltonians (bang-bang controls). To overcome the shortcomings of bang-bang control Viola and Knill proposed a method called Eulerian decoupling that allows the use of bounded-strength controls for decoupling. However, their method was not directly designed to take advantage of the composite structure of multipartite quantum systems. In this paper we define a combinatorial structure called an Eulerian orthogonal array. It merges the desirable properties of orthogonal arrays and Eulerian cycles in Cayley graphs (that are the basis of Eulerian decoupling). We show that this structure gives rise to decoupling schemes with bounded-strength control Hamiltonians that can be applied to composite quantum systems with few body Hamiltonians and special couplings with the environment. Furthermore, we show how to construct Eulerian orthogonal arrays having good parameters in order to obtain efficient decoupling schemes.Comment: 8 pages, revte

    Controlling quantum systems by embedded dynamical decoupling schemes

    Full text link
    A dynamical decoupling method is presented which is based on embedding a deterministic decoupling scheme into a stochastic one. This way it is possible to combine the advantages of both methods and to increase the suppression of undesired perturbations of quantum systems significantly even for long interaction times. As a first application the stabilization of a quantum memory is discussed which is perturbed by one-and two-qubit interactions

    Determining parameters of the Neugebauer family of vacuum spacetimes in terms of data specified on the symmetry axis

    Get PDF
    We express the complex potential E and the metrical fields omega and gamma of all stationary axisymmetric vacuum spacetimes that result from the application of two successive quadruple-Neugebauer (or two double-Harrison) transformations to Minkowski space in terms of data specified on the symmetry axis, which are in turn easily expressed in terms of multipole moments. Moreover, we suggest how, in future papers, we shall apply our approach to do the same thing for those vacuum solutions that arise from the application of more than two successive transformations, and for those electrovac solutions that have axis data similar to that of the vacuum solutions of the Neugebauer family. (References revised following response from referee.)Comment: 18 pages (REVTEX

    Oakleaf: an S locus-linked mutation of Primula vulgaris that affects leaf and flower development

    Get PDF
    •In Primula vulgaris outcrossing is promoted through reciprocal herkogamy with insect-mediated cross-pollination between pin and thrum form flowers. Development of heteromorphic flowers is coordinated by genes at the S locus. To underpin construction of a genetic map facilitating isolation of these S locus genes, we have characterised Oakleaf, a novel S locus-linked mutant phenotype. •We combine phenotypic observation of flower and leaf development, with classical genetic analysis and next-generation sequencing to address the molecular basis of Oakleaf. •Oakleaf is a dominant mutation that affects both leaf and flower development; plants produce distinctive lobed leaves, with occasional ectopic meristems on the veins. This phenotype is reminiscent of overexpression of Class I KNOX-homeodomain transcription factors. We describe the structure and expression of all eight P. vulgaris PvKNOX genes in both wild-type and Oakleaf plants, and present comparative transcriptome analysis of leaves and flowers from Oakleaf and wild-type plants. •Oakleaf provides a new phenotypic marker for genetic analysis of the Primula S locus. We show that none of the Class I PvKNOX genes are strongly upregulated in Oakleaf leaves and flowers, and identify cohorts of 507 upregulated and 314 downregulated genes in the Oakleaf mutant
    corecore