29 research outputs found

    Kv1.3 blockade by ShK186 modulates CD4+ effector memory T-cell activity of patients with Granulomatosis with polyangiitis

    Get PDF
    OBJECTIVES: Granulomatosis with polyangiitis (GPA) is a chronic relapsing systemic autoimmune vasculitis. Current treatment of GPA is unsatisfactory as it relies on strong immunosuppressive regimens, with either cyclophosphamide or rituximab, that reduce the immunogenicity of several vaccines and are risk factors of severe form of COVID-19. This emphasizes the need to identify new drug target and to develop treatment strategies with less harmful side effects. Since CD4+ effector memory T cells (TEM) play a key role in the pathogenesis of GPA, we aimed in this study to modulate CD4+TEM cell activity via Kv1.3 blockade using the specific peptide inhibiter, ShK-186.METHODS: Peripheral blood of 27 GPA-patients in remission and 16 age- and sex-matched healthy controls (HCs) were pre-incubated in vitro in the presence or absence of ShK-186, followed by stimulation with PMA, calcium ionophore and brefeldin-A. The effect of ShK-186 on the cytokine production (IFNγ, TNFα, IL-4, IL-17, IL-21) within total and subsets of CD4+TH cells were assessed using flow cytometry.RESULTS: ShK-186 reduced the expression level of IFNγ, TNFα, IL-4, IL-17, and IL-21 in CD4+TH cells from GPA-patients in vitro. Further analysis performed on sorted CD4+T cell subsets, revealed that ShK-186 predominantly inhibited the cytokine production of CD4+TEM cells. ShK-186 treatment reduced the production of the pro-inflammatory cytokines to the level seen in CD4+ TH cells from HCs.CONCLUSIONS: Modulation of cellular effector function by ShK-186 may constitute a novel treatment strategy for GPA with high specificity and less harmful side effects.</p

    Kv1.3 blockade by ShK186 modulates CD4+ effector memory T-cell activity of patients with Granulomatosis with polyangiitis

    Get PDF
    OBJECTIVES: Granulomatosis with polyangiitis (GPA) is a chronic relapsing systemic autoimmune vasculitis. Current treatment of GPA is unsatisfactory as it relies on strong immunosuppressive regimens, with either cyclophosphamide or rituximab, that reduce the immunogenicity of several vaccines and are risk factors of severe form of COVID-19. This emphasizes the need to identify new drug target and to develop treatment strategies with less harmful side effects. Since CD4+ effector memory T cells (TEM) play a key role in the pathogenesis of GPA, we aimed in this study to modulate CD4+TEM cell activity via Kv1.3 blockade using the specific peptide inhibiter, ShK-186.METHODS: Peripheral blood of 27 GPA-patients in remission and 16 age- and sex-matched healthy controls (HCs) were pre-incubated in vitro in the presence or absence of ShK-186, followed by stimulation with PMA, calcium ionophore and brefeldin-A. The effect of ShK-186 on the cytokine production (IFNγ, TNFα, IL-4, IL-17, IL-21) within total and subsets of CD4+TH cells were assessed using flow cytometry.RESULTS: ShK-186 reduced the expression level of IFNγ, TNFα, IL-4, IL-17, and IL-21 in CD4+TH cells from GPA-patients in vitro. Further analysis performed on sorted CD4+T cell subsets, revealed that ShK-186 predominantly inhibited the cytokine production of CD4+TEM cells. ShK-186 treatment reduced the production of the pro-inflammatory cytokines to the level seen in CD4+ TH cells from HCs.CONCLUSIONS: Modulation of cellular effector function by ShK-186 may constitute a novel treatment strategy for GPA with high specificity and less harmful side effects.</p

    Kv1.3 blockade by ShK186 modulates CD4+ effector memory T-cell activity of patients with Granulomatosis with polyangiitis

    Get PDF
    OBJECTIVES: Granulomatosis with polyangiitis (GPA) is a chronic relapsing systemic autoimmune vasculitis. Current treatment of GPA is unsatisfactory as it relies on strong immunosuppressive regimens, with either cyclophosphamide or rituximab, that reduce the immunogenicity of several vaccines and are risk factors of severe form of COVID-19. This emphasizes the need to identify new drug target and to develop treatment strategies with less harmful side effects. Since CD4+ effector memory T cells (TEM) play a key role in the pathogenesis of GPA, we aimed in this study to modulate CD4+TEM cell activity via Kv1.3 blockade using the specific peptide inhibiter, ShK-186.METHODS: Peripheral blood of 27 GPA-patients in remission and 16 age- and sex-matched healthy controls (HCs) were pre-incubated in vitro in the presence or absence of ShK-186, followed by stimulation with PMA, calcium ionophore and brefeldin-A. The effect of ShK-186 on the cytokine production (IFNγ, TNFα, IL-4, IL-17, IL-21) within total and subsets of CD4+TH cells were assessed using flow cytometry.RESULTS: ShK-186 reduced the expression level of IFNγ, TNFα, IL-4, IL-17, and IL-21 in CD4+TH cells from GPA-patients in vitro. Further analysis performed on sorted CD4+T cell subsets, revealed that ShK-186 predominantly inhibited the cytokine production of CD4+TEM cells. ShK-186 treatment reduced the production of the pro-inflammatory cytokines to the level seen in CD4+ TH cells from HCs.CONCLUSIONS: Modulation of cellular effector function by ShK-186 may constitute a novel treatment strategy for GPA with high specificity and less harmful side effects.</p

    Kv1.3 blockade by ShK186 modulates CD4+ effector memory T-cell activity of patients with Granulomatosis with polyangiitis

    Get PDF
    OBJECTIVES: Granulomatosis with polyangiitis (GPA) is a chronic relapsing systemic autoimmune vasculitis. Current treatment of GPA is unsatisfactory as it relies on strong immunosuppressive regimens, with either cyclophosphamide or rituximab, that reduce the immunogenicity of several vaccines and are risk factors of severe form of COVID-19. This emphasizes the need to identify new drug target and to develop treatment strategies with less harmful side effects. Since CD4+ effector memory T cells (TEM) play a key role in the pathogenesis of GPA, we aimed in this study to modulate CD4+TEM cell activity via Kv1.3 blockade using the specific peptide inhibiter, ShK-186.METHODS: Peripheral blood of 27 GPA-patients in remission and 16 age- and sex-matched healthy controls (HCs) were pre-incubated in vitro in the presence or absence of ShK-186, followed by stimulation with PMA, calcium ionophore and brefeldin-A. The effect of ShK-186 on the cytokine production (IFNγ, TNFα, IL-4, IL-17, IL-21) within total and subsets of CD4+TH cells were assessed using flow cytometry.RESULTS: ShK-186 reduced the expression level of IFNγ, TNFα, IL-4, IL-17, and IL-21 in CD4+TH cells from GPA-patients in vitro. Further analysis performed on sorted CD4+T cell subsets, revealed that ShK-186 predominantly inhibited the cytokine production of CD4+TEM cells. ShK-186 treatment reduced the production of the pro-inflammatory cytokines to the level seen in CD4+ TH cells from HCs.CONCLUSIONS: Modulation of cellular effector function by ShK-186 may constitute a novel treatment strategy for GPA with high specificity and less harmful side effects.</p

    Kv1.3 blockade by ShK186 modulates CD4+ effector memory T-cell activity of patients with Granulomatosis with polyangiitis

    Get PDF
    OBJECTIVES: Granulomatosis with polyangiitis (GPA) is a chronic relapsing systemic autoimmune vasculitis. Current treatment of GPA is unsatisfactory as it relies on strong immunosuppressive regimens, with either cyclophosphamide or rituximab, that reduce the immunogenicity of several vaccines and are risk factors of severe form of COVID-19. This emphasizes the need to identify new drug target and to develop treatment strategies with less harmful side effects. Since CD4+ effector memory T cells (TEM) play a key role in the pathogenesis of GPA, we aimed in this study to modulate CD4+TEM cell activity via Kv1.3 blockade using the specific peptide inhibiter, ShK-186.METHODS: Peripheral blood of 27 GPA-patients in remission and 16 age- and sex-matched healthy controls (HCs) were pre-incubated in vitro in the presence or absence of ShK-186, followed by stimulation with PMA, calcium ionophore and brefeldin-A. The effect of ShK-186 on the cytokine production (IFNγ, TNFα, IL-4, IL-17, IL-21) within total and subsets of CD4+TH cells were assessed using flow cytometry.RESULTS: ShK-186 reduced the expression level of IFNγ, TNFα, IL-4, IL-17, and IL-21 in CD4+TH cells from GPA-patients in vitro. Further analysis performed on sorted CD4+T cell subsets, revealed that ShK-186 predominantly inhibited the cytokine production of CD4+TEM cells. ShK-186 treatment reduced the production of the pro-inflammatory cytokines to the level seen in CD4+ TH cells from HCs.CONCLUSIONS: Modulation of cellular effector function by ShK-186 may constitute a novel treatment strategy for GPA with high specificity and less harmful side effects.</p

    Carbon metabolism of intracellular bacteria

    No full text
    Bacterial metabolism has been studied intensively since the first observations of these 'animalcules' by Leeuwenhoek and their isolation in pure cultures by Pasteur. Metabolic studies have traditionally focused on a small number of model organisms, primarily the Gram negative bacillus Escherichia coli, adapted to artificial culture conditions in the laboratory. Comparatively little is known about the physiology and metabolism of wild microorganisms living in their natural habitats. For approximately 500-1000 species of commensals and symbionts, and a smaller number of pathogenic bacteria, that habitat is the human body. Emerging evidence suggests that the metabolism of bacteria grown in vivo differs profoundly from their metabolism in axenic cultures

    Isolation of Streptococcus pneumoniae Biofilm Mutants and Their Characterization during Nasopharyngeal Colonization▿ †

    No full text
    Asymptomatic colonization of the nasopharynx by Streptococcus pneumoniae precedes pneumococcal disease, yet pneumococcal colonization factors remain poorly understood. Many bacterial infections involve biofilms which protect bacteria from host defenses and antibiotics. To gain insight into the genetics of biofilm formation by S. pneumoniae, we conducted an in vitro screen for biofilm-altered mutants with the serotype 4 clinical isolate TIGR4. In a first screen of 6,000 mariner transposon mutants, we repeatedly isolated biofilm-overproducing acapsular mutants, suggesting that the capsule was antagonistic to biofilm formation. Therefore, we screened 6,500 additional transposon mutants in an S. pneumoniae acapsular background. Following this approach, we isolated 69 insertions in 49 different genes. The collection of mutants includes genes encoding bona fide and putative choline binding proteins, adhesins, synthases of membrane and cell wall components, extracellular and cell wall proteases, efflux pumps, ABC and PTS transporters, and transcriptional regulators, as well as several conserved and novel hypothetical proteins. Interestingly, while four insertions mapped to rrgA, encoding a subunit of a recently described surface pilus, rrgB and rrgC (encoding the other two pilus subunits) mutants had no biofilm defects, implicating the RrgA adhesin but not the pilus structure per se in biofilm formation. To correlate our findings to the process of colonization, we transferred a set of 29 mutations into the wild-type encapsulated strain and then tested the fitness of the mutants in vivo. Strikingly, we found that 23 of these mutants were impaired for nasopharyngeal colonization, thus establishing a link between biofilm formation and colonization

    The biological basis of disease recurrence in psoriasis : a historical perspective and current models

    Get PDF
    A key challenge in psoriasis therapy is the tendency for lesions to recur in previously affected anatomical locations after treatment discontinuation following lesion resolution. Available evidence supports the concept of a localized immunological 'memory' that persists in resolved skin after complete disappearance of visible inflammation, as well as the role of a specific subpopulation of T cells characterized by the dermotropic CCR4 phenotype and forming a local memory. Increasing knowledge of the interleukin (IL)-23/T helper 17 (Th17) cell pathway in psoriasis immunopathology is pointing away from the historical classification of psoriasis as primarily a Th1-type disease. Research undertaken from the 1990s to the mid-2000s provided evidence for the existence of a large population of CD8 and CD4 tissue-resident memory T cells in resolved skin, which can initiate and perpetuate immune responses of psoriasis in the absence of T-cell recruitment from the blood. Dendritic cells (DCs) are antigen-presenting cells that contribute to psoriasis pathology via the secretion of IL-23, the upstream regulator of Th17 cells, while plasmacytoid DCs are involved via IL-36 signalling and type I interferon activation. Overall, the evidence discussed in this review indicates that IL-23-driven/IL-17-producing T cells play a critical role in psoriasis pathology and recurrence, making these cytokines logical therapeutic targets. The review also explains the clinical efficacy of IL-17 and IL-23 receptor blockers in the treatment of psoriasis

    Replication Dynamics of Mycobacterium tuberculosis in Chronically Infected Mice

    No full text
    The dynamics of host-pathogen interactions have important implications for the design of new antimicrobial agents to treat chronic infections such as tuberculosis (TB), which is notoriously refractory to conventional drug therapy. In the mouse model of TB, an acute phase of exponential bacterial growth in the lungs is followed by a chronic phase characterized by relatively stable numbers of bacteria. This equilibrium could be static, with little ongoing replication, or dynamic, with continuous bacterial multiplication balanced by bacterial killing. A static model predicts a close correspondence between “viable counts” (live bacteria) and “total counts” (live plus dead bacteria) in the lungs over time. A dynamic model predicts the divergence of total counts and viable counts over time due to the accumulation of dead bacteria. Here, viable counts are defined as bacterial CFU enumerated by plating lung homogenates; total counts are defined as bacterial chromosome equivalents (CEQ) enumerated by using quantitative real-time PCR. We show that the viable and total bacterial counts in the lungs of chronically infected mice do not diverge over time. Rapid degradation of dead bacteria is unlikely to account for the stability of bacterial CEQ numbers in the lungs over time, because treatment of mice with isoniazid for 8 weeks led to a marked reduction in the number of CFU without reducing the number of CEQ. These observations support the hypothesis that the stable number of bacterial CFU in the lungs during chronic infection represents a static equilibrium between host and pathogen
    corecore