4 research outputs found

    Inhibition of Mef2a Enhances Neovascularization via Post-transcriptional Regulation of 14q32 MicroRNAs miR-329 and miR-494

    No full text
    Improving the efficacy of neovascularization is a promising strategy to restore perfusion of ischemic tissues in patients with peripheral arterial disease. The 14q32 microRNA cluster is highly involved in neovascularization. The Mef2a transcription factor has been shown to induce transcription of the microRNAs within this cluster. We inhibited expression of Mef2a using gene-silencing oligonucleotides (GSOs) in an in vivo hind limb ischemia model. Treatment with GSO-Mef2a clearly improved blood flow recovery within 3 days (44% recovery versus 25% recovery in control) and persisted until 14 days after ischemia induction (80% recovery versus 60% recovery in control). Animals treated with GSO-Mef2a showed increased arteriogenesis and angiogenesis in the relevant muscle tissues. Inhibition of Mef2a decreased expression of 14q32 microRNAs miR-329 (p = 0.026) and miR-494 (trend, p = 0.06), but not of other 14q32 microRNAs, nor of 14q32 microRNA precursors. Because Mef2a did not influence 14q32 microRNA transcription, we hypothesized it functions as an RNA-binding protein that influences processing of 14q32 microRNA miR-329 and miR-494. Mef2A immunoprecipitation followed by RNA isolation and rt/qPCR confirmed direct binding of MEF2A to pri-miR-494, supporting this hypothesis. Our study demonstrates a novel function for Mef2a in post-ischemic neovascularization via post-transcriptional regulation of 14q32 microRNAs miR-329 and miR-494

    Identification of IgG1 isotype phosphorylcholine antibodies for the treatment of inflammatory cardiovascular diseases

    No full text
    Background Phosphorylcholine (PC) is an important pro‐inflammatory damage‐associated molecular pattern. Previous data have shown that natural IgM anti‐PC protects against cardiovascular disease. We aimed to develop a monoclonal PC IgG antibody with anti‐inflammatory and anti‐atherosclerotic properties. Methods Using various techniques PC antibodies were validated and optimized. In vivo testing was performed in a femoral artery cuff model in ApoE3*Leiden mice. Safety studies are performed in rats and cynomolgus monkeys. Results A chimeric anti‐PC (PC‐mAb(T15), consisting of a human IgG1 Fc and a mouse T15/E06 Fab) was produced, and this was shown to bind specifically to epitopes in human atherosclerotic tissues. The cuff model results in rapid induction of inflammatory genes and altered expression of genes associated with ER stress and choline metabolism in the lesions. Treatment with PC‐mAb(T15) reduced accelerated atherosclerosis via reduced expression of endoplasmic reticulum stress markers and CCL2 production. Recombinant anti‐PC Fab fragments were identified by phage display and cloned into fully human IgG1 backbones creating a human monoclonal IgG1 anti‐PC (PC‐mAbs) that specifically bind PC, apoptotic cells and oxLDL. Based on preventing macrophage oxLDL uptake and CCL2 production, four monoclonal PC‐mAbs were selected, which to various extent reduced vascular inflammation and lesion development. Additional optimization and validation of two PC‐mAb antibodies resulted in selection of PC‐mAb X19‐A05, which inhibited accelerated atherosclerosis. Clinical grade production of this antibody (ATH3G10) significantly attenuated vascular inflammation and accelerated atherosclerosis and was tolerated in safety studies in rats and cynomolgus monkeys. Conclusions Chimeric anti‐PCs can prevent accelerated atherosclerosis by inhibiting vascular inflammation directly and through reduced macrophage oxLDL uptake resulting in decreased lesions. PC‐mAb represents a novel strategy for cardiovascular disease prevention.ISSN:0954-6820ISSN:1365-279

    Identification of IgG1 isotype phosphorylcholine antibodies for the treatment of inflammatory cardiovascular diseases

    No full text
    Background Phosphorylcholine (PC) is an important pro‐inflammatory damage‐associated molecular pattern. Previous data have shown that natural IgM anti‐PC protects against cardiovascular disease. We aimed to develop a monoclonal PC IgG antibody with anti‐inflammatory and anti‐atherosclerotic properties. Methods Using various techniques PC antibodies were validated and optimized. In vivo testing was performed in a femoral artery cuff model in ApoE3*Leiden mice. Safety studies are performed in rats and cynomolgus monkeys. Results A chimeric anti‐PC (PC‐mAb(T15), consisting of a human IgG1 Fc and a mouse T15/E06 Fab) was produced, and this was shown to bind specifically to epitopes in human atherosclerotic tissues. The cuff model results in rapid induction of inflammatory genes and altered expression of genes associated with ER stress and choline metabolism in the lesions. Treatment with PC‐mAb(T15) reduced accelerated atherosclerosis via reduced expression of endoplasmic reticulum stress markers and CCL2 production. Recombinant anti‐PC Fab fragments were identified by phage display and cloned into fully human IgG1 backbones creating a human monoclonal IgG1 anti‐PC (PC‐mAbs) that specifically bind PC, apoptotic cells and oxLDL. Based on preventing macrophage oxLDL uptake and CCL2 production, four monoclonal PC‐mAbs were selected, which to various extent reduced vascular inflammation and lesion development. Additional optimization and validation of two PC‐mAb antibodies resulted in selection of PC‐mAb X19‐A05, which inhibited accelerated atherosclerosis. Clinical grade production of this antibody (ATH3G10) significantly attenuated vascular inflammation and accelerated atherosclerosis and was tolerated in safety studies in rats and cynomolgus monkeys. Conclusions Chimeric anti‐PCs can prevent accelerated atherosclerosis by inhibiting vascular inflammation directly and through reduced macrophage oxLDL uptake resulting in decreased lesions. PC‐mAb represents a novel strategy for cardiovascular disease prevention.ISSN:0954-6820ISSN:1365-279
    corecore