43 research outputs found

    Metabolic profiling reveals key metabolites regulating adventitious root formation in ancient Platycladus orientalis cuttings

    Get PDF
    Platycladus orientalis, a common horticultural tree species, has an extremely long life span and forms a graceful canopy. Its branches, leaves, and cones have been used in traditional Chinese medicine. However, difficulty in rooting is the main limiting factor for the conservation of germplasm resources. This study shows that the rooting rates and root numbers of cuttings were significantly reduced in ancient P. orientalis donors compared to 5-year-old P. orientalis donors. The contents of differentially accumulated metabolites (DAMs) in phenylpropanoid (caffeic acid and coniferyl alcohol) and flavonoid biosynthesis (cinnamoyl-CoA and isoliquiritigenin) pathways increased significantly in cuttings propagated from ancient P. orientalis donors compared to 5-year-old P. orientalis donors during adventitious root (AR) formation. These DAMs may prevent the ancient P. orientalis cuttings from rooting, and gradual lignification of callus was one of the main reasons for the failed rooting of ancient P. orientalis cuttings. The rooting rates of ancient P. orientalis cuttings were improved by wounding the callus to identify wounding-induced rooting-promoting metabolites. After wounding, the contents of DAMs in zeatin (5′-methylthioadenosine, cis-zeatin-O-glucoside, and adenine) and aminoacyl-tRNA biosynthesis (l-glutamine, l-histidine, l-isoleucine, l-leucine, and l-arginine) pathways increased, which might promote cell division and provided energy for the rooting process. The findings of our study suggest that breaking down the lignification of callus via wounding can eventually improve the rooting rates of ancient P. orientalis cuttings, which provides a new solution for cuttings of other difficult-to-root horticultural and woody plants

    Quantitative Analysis of Porous Silicon Nanoparticles Functionaliza-tion by 1H NMR

    Get PDF
    Porous silicon (PSi) nanoparticles have been applied in various fields, such as catalysis, imaging, and biomedical applications, because of their large specific surface area, easily modifiable surface chemistry, biocompatibility, and biodegradability. For biomedical applications, it is important to precisely control the surface modification of PSi-based materials and quantify the functionalization density, which determines the nanoparticle’s behavior in the biological system. Therefore, we propose here an optimized solution to quantify the functionalization groups on PSi, based on the nuclear magnetic resonance (NMR) method by combining the hydrolysis with standard 1H NMR experiments. We optimized the hydrolysis conditions to degrade the PSi, providing mobility to the molecules for NMR detection. The NMR parameters were also optimized by relaxation delay and the number of scans to provide reliable NMR spectra. With an internal standard, we quantitatively analyzed the surficial amine groups and their sequential modification of polyethylene glycol. Our investigation provides a reliable, fast, and straightforward method in quantitative analysis of the surficial modification characterization of PSi requiring a small amount of sample.Peer reviewe

    Close-loop dynamic nanohybrids on collagen-ark with in situ gelling transformation capability for biomimetic stage-specific diabetic wound healing

    Get PDF
    Here, an oxidation/acid dual-responsive nanohybrids/ark system was produced. The microfluidics-produced nanohybrids endow the system with an orchestrated cascade from wound detection, reactive oxygen species scavenging, drug release to hydrogel formation. The drug release behavior imitates the dynamic wound healing process, thus rendering an enhanced bio-mimetic regeneration.Peer reviewe

    Tandem-Mass-Tag based proteomic analysis facilitates analyzing critical factors of porous silicon nanoparticles in determining their biological responses under diseased condition

    Get PDF
    The analysis of nanoparticles' biocompatibility and immunogenicity is mostly performed under a healthy condition. However, more clinically relevant evaluation conducted under pathological condition is less known. Here, the immunogenicity and bio-nano interactions of porous silicon nanoparticles (PSi NPs) are evaluated in an acute liver inflammation mice model. Interestingly, a new mechanism in which PSi NPs can remit the hepatocellular damage and inflammation activation in a surface dependent manner through protein corona formation, which perturbs the inflammation by capturing the pro-inflammatory signaling proteins that are inordinately excreted or exposed under pathological condition, is found. This signal sequestration further attenuates the nuclear factor kappa B pathway activation and cytokines production from macrophages. Hence, the study proposes a potential mechanism for elucidating the altered immunogenicity of nanomaterials under pathological conditions, which might further offer insights to establish harmonized standards for assessing the biosafety of biomaterials in a disease-specific or personalized manner.Peer reviewe

    Multistage signal-interactive nanoparticles improve tumor targeting through efficient nanoparticle-cell communications

    Get PDF
    Communication between biological components is critical for homeostasis maintenance among the convergence of complicated bio-signals. For therapeutic nanoparticles (NPs), the general lack of effective communication mechanisms with the external cellular environment causes loss of homeostasis, resulting in deprived autonomy, severe macrophage-mediated clearance, and limited tumor accumulation. Here, we develop a multistage signal-interactive system on porous silicon particles through integrating the Self-peptide and Tyr-Ile-Gly-Ser-Arg (YIGSR) peptide into a hierarchical chimeric signaling interface with “don’t eat me” and “eat me” signals. This biochemical transceiver can act as both the signal receiver for amantadine to achieve NP transformation and signal conversion as well as the signal source to present different signals sequentially by reversible self-mimicking. Compared with the non-interactive controls, these signal-interactive NPs loaded with AS1411 and tanespimycin (17-AAG) as anticancer drugs improve tumor targeting 2.8-fold and tumor suppression 6.5-fold and showed only 51% accumulation in the liver with restricted hepatic injury.Peer reviewe

    Multifunctional Biomimetic Nanovaccines Based on Photothermal and Weak-Immunostimulatory Nanoparticulate Cores for the Immunotherapy of Solid Tumors

    Get PDF
    An alternative strategy of choosing photothermal and weak-immunostimulatory porous silicon@Au nanocomposites as particulate cores to prepare a biomimetic nanovaccine is reported to improve its biosafety and immunotherapeutic efficacy for solid tumors. A quantitative analysis method is used to calculate the loading amount of cancer cell membranes onto porous silicon@Au nanocomposites. Assisted with foreign-body responses, these exogenous nanoparticulate cores with weak immunostimulatory effect can still efficiently deliver cancer cell membranes into dendritic cells to activate them and the downstream antitumor immunity, resulting in no occurrence of solid tumors and the survival of all immunized mice during 55 day observation. In addition, this nanovaccine, as a photothermal therapeutic agent, synergized with additional immunotherapies can significantly inhibit the growth and metastasis of established solid tumors, via the initiation of the antitumor immune responses in the body and the reversion of their immunosuppressive microenvironments. Considering the versatile surface engineering of porous silicon nanoparticles, the strategy developed here is beneficial to construct multifunctional nanovaccines with better biosafety and more diagnosis or therapeutic modalities against the occurrence, recurrence, or metastasis of solid tumors in future clinical practice.Peer reviewe

    Quantitative Analysis of Porous Silicon Nanoparticles Functionalization by 1H NMR

    Get PDF
    Porous silicon (PSi) nanoparticles have been applied in various fields, such as catalysis, imaging, and biomedical applications, because of their large specific surface area, easily modifiable surface chemistry, biocompatibility, and biodegradability. For biomedical applications, it is important to precisely control the surface modification of PSi-based materials and quantify the functionalization density, which determines the nanoparticle’s behavior in the biological system. Therefore, we propose here an optimized solution to quantify the functionalization groups on PSi, based on the nuclear magnetic resonance (NMR) method by combining the hydrolysis with standard 1H NMR experiments. We optimized the hydrolysis conditions to degrade the PSi, providing mobility to the molecules for NMR detection. The NMR parameters were also optimized by relaxation delay and the number of scans to provide reliable NMR spectra. With an internal standard, we quantitatively analyzed the surficial amine groups and their sequential modification of polyethylene glycol. Our investigation provides a reliable, fast, and straightforward method in quantitative analysis of the surficial modification characterization of PSi requiring a small amount of sample.</p

    Close-loop dynamic nanohybrids on collagen-ark with in situ gelling transformation capability for biomimetic stage-specific diabetic wound healing

    Get PDF
    Here, an oxidation/acid dual-responsive nanohybrids/ark system was produced. The microfluidics-produced nanohybrids endow the system with an orchestrated cascade from wound detection, reactive oxygen species scavenging, drug release to hydrogel formation. The drug release behavior imitates the dynamic wound healing process, thus rendering an enhanced bio-mimetic regeneration

    Small-Molecule-based Supramolecular Plastics Mediated by Liquid-Liquid Phase Separation

    Get PDF
    Plastics are one of the most widely used polymeric materials. However, they are often undegradable and non-recyclable due to the very stable covalent bonds of macromolecules, causing environmental pollution and health problems. Here, we report that liquid-liquid phase separation (LLPS) could drive the formation of robust, stable, and sustainable plastics using small molecules. The LLPS process could sequester and concentrate solutes, strengthen the non-covalent association between molecules and produce a bulk material whose property was highly related to the encapsulated water amounts. It was a robust plastic with a remarkable Young's modulus of 139.5 MPa when the water content was low while became adhesive and could instantly self-heal with more absorbed water. Finally, responsiveness enabled the material to be highly recyclable. This work allowed us to understand the LLPS at the molecular level and demonstrated that LLPS is a promising approach to exploring eco-friendly supramolecular plastics that are potential substitutes for conventional polymers.</p
    corecore