675 research outputs found
Fast atomic transport without vibrational heating
We use the dynamical invariants associated with the Hamiltonian of an atom in
a one dimensional moving trap to inverse engineer the trap motion and perform
fast atomic transport without final vibrational heating. The atom is driven
non-adiabatically through a shortcut to the result of adiabatic, slow trap
motion. For harmonic potentials this only requires designing appropriate trap
trajectories, whereas perfect transport in anharmonic traps may be achieved by
applying an extra field to compensate the forces in the rest frame of the trap.
The results can be extended to atom stopping or launching. The limitations due
to geometrical constraints, energies and accelerations involved are analyzed,
as well as the relation to previous approaches (based on classical trajectories
or "fast-forward" and "bang-bang" methods) which can be integrated in the
invariant-based framework.Comment: 10 pages, 5 figure
Nonlinearity Management in Higher Dimensions
In the present short communication, we revisit nonlinearity management of the
time-periodic nonlinear Schrodinger equation and the related averaging
procedure. We prove that the averaged nonlinear Schrodinger equation does not
support the blow-up of solutions in higher dimensions, independently of the
strength in the nonlinearity coefficient variance. This conclusion agrees with
earlier works in the case of strong nonlinearity management but contradicts
those in the case of weak nonlinearity management. The apparent discrepancy is
explained by the divergence of the averaging procedure in the limit of weak
nonlinearity management.Comment: 9 pages, 1 figure
Bi-stable tunneling current through a molecular quantum dot
An exact solution is presented for tunneling through a negative-U d-fold
degenerate molecular quantum dot weakly coupled to electrical leads. The tunnel
current exhibits hysteresis if the level degeneracy of the negative-U dot is
larger than two (d>2). Switching occurs in the voltage range V1 < V < V2 as a
result of attractive electron correlations in the molecule, which open up a new
conducting channel when the voltage is above the threshold bias voltage V2.
Once this current has been established, the extra channel remains open as the
voltage is reduced down to the lower threshold voltage V1. Possible
realizations of the bi-stable molecular quantum dots are fullerenes, especially
C60, and mixed-valence compounds.Comment: 5 pages, 1 figure. (v2) Figure updated to compare the current
hysteresis for degeneracies d=4 and d>>1 of the level in the dot, minor
corrections in the text. To appear in Phys. Rev.
Observation of narrow baryon resonance decaying into in pA-interactions at with SVD-2 setup
SVD-2 experiment data have been analyzed to search for an exotic baryon
state, the -baryon, in a decay mode at on IHEP
accelerator. The reaction with a limited multiplicity was
used in the analysis. The invariant mass spectrum shows a resonant
structure with and . The statistical significance of this peak was estimated to be of . The mass and width of the resonance is compatible with the recently
reported - baryon with positive strangeness which was predicted as an
exotic pentaquark () baryon state. The total cross section for
production in pN-interactions for was estimated to be
and no essential deviation from A-dependence for inelastic
events was found.Comment: 8 pages, 7 figures, To be submitted to Yadernaya Fizika. v3-v5 - Some
references added, minor typos correcte
The Minimum-Uncertainty Squeezed States for for Atoms and Photons in a Cavity
We describe a six-parameter family of the minimum-uncertainty squeezed states
for the harmonic oscillator in nonrelativistic quantum mechanics. They are
derived by the action of corresponding maximal kinematical invariance group on
the standard ground state solution. We show that the product of the variances
attains the required minimum value 1/4 only at the instances that one variance
is a minimum and the other is a maximum, when the squeezing of one of the
variances occurs. The generalized coherent states are explicitly constructed
and their Wigner function is studied. The overlap coefficients between the
squeezed, or generalized harmonic, and the Fock states are explicitly evaluated
in terms of hypergeometric functions. The corresponding photons statistics are
discussed and some applications to quantum optics, cavity quantum
electrodynamics, and superfocusing in channeling scattering are mentioned.
Explicit solutions of the Heisenberg equations for radiation field operators
with squeezing are found.Comment: 27 pages, no figures, 174 references J. Phys. B: At. Mol. Opt. Phys.,
Special Issue celebrating the 20th anniversary of quantum state engineering
(R. Blatt, A. Lvovsky, and G. Milburn, Guest Editors), May 201
Stability and collapse of localized solutions of the controlled three-dimensional Gross-Pitaevskii equation
On the basis of recent investigations, a newly developed analytical procedure
is used for constructing a wide class of localized solutions of the controlled
three-dimensional (3D) Gross-Pitaevskii equation (GPE) that governs the
dynamics of Bose-Einstein condensates (BECs). The controlled 3D GPE is
decomposed into a two-dimensional (2D) linear Schr\"{o}dinger equation and a
one-dimensional (1D) nonlinear Schr\"{o}dinger equation, constrained by a
variational condition for the controlling potential. Then, the above class of
localized solutions are constructed as the product of the solutions of the
transverse and longitudinal equations. On the basis of these exact 3D
analytical solutions, a stability analysis is carried out, focusing our
attention on the physical conditions for having collapsing or non-collapsing
solutions.Comment: 21 pages, 14 figure
Adiabatic invariants and Mixmaster catastrophes
We present a rigorous analysis of the role and uses of the adiabatic
invariant in the Mixmaster dynamical system. We propose a new invariant for the
global dynamics which in some respects has an improved behaviour over the
commonly used one. We illustrate its behaviour in a number of numerical
results. We also present a new formulation of the dynamics via Catastrophe
Theory. We find that the change from one era to the next corresponds to a fold
catastrophe, during the Kasner shifts the potential is an Implicit Function
Form whereas, as the anisotropy dissipates, the Mixmaster potential must become
a Morse 0--saddle. We compare and contrast our results to many known works on
the Mixmaster problem and indicate how extensions could be achieved. Further
exploitation of this formulation may lead to a clearer understanding of the
global Mixmaster dynamics.Comment: 24 pages, LaTeX, 5 figures (which can be obtained by sending a
message to the first author), submitted to Phys.Rev.
Properties of Neutral Charmed Mesons in Proton--Nucleus Interactions at 70 GeV
The results of treatment of data obtained in the SERP-E-184experiment
"Investigation of mechanisms of the production of charmed particles in
proton-nucleus interactions at 70 GeV and their decays" by irradiating the
active target of the SVD-2 facility consisting of carbon, silicon, and lead
plates, are presented. After separating a signal from the two-particle decay of
neutral charmed mesons and estimating the cross section for charm production at
a threshold energy {\sigma}(c\v{c})=7.1 \pm 2.4(stat.) \pm 1.4(syst.)
\mub/nucleon, some properties of D mesons are investigated. These include the
dependence of the cross section on the target mass number (its A dependence);
the behavior of the differential cross sections d{\sigma}/dpt2 and
d{\sigma}/dxF; and the dependence of the parameter {\alpha} on the kinematical
variables xF, pt2, and plab. The experimental results in question are compared
with predictions obtained on the basis of the FRITIOF7.02 code.Comment: 9 pages, 9 figures,3 table
- …
