202 research outputs found

    Chitin-Induced Airway Epithelial Cell Innate Immune Responses Are Inhibited by Carvacrol/Thymol.

    Get PDF
    Chitin is produced in large amounts by fungi, insects, and other organisms and has been implicated in the pathogenesis of asthma. Airway epithelial cells are in direct contact with environmental particles and serve as the first line of defense against inhaled allergens and pathogens. The potential contributions of airway epithelial cells to chitin-induced asthma remain poorly understood. We hypothesized that chitin directly stimulates airway epithelial cells to release cytokines that promote type 2 immune responses and to induce expression of molecules which are important in innate immune responses. We found that chitin exposure rapidly induced the expression of three key type 2-promoting cytokines, IL-25, IL-33 and TSLP, in BEAS-2B transformed human bronchial epithelial cells and in A549 and H292 lung carcinoma cells. Chitin also induced the expression of the key pattern recognition receptors TLR2 and TLR4. Chitin induced the expression of miR-155, miR-146a and miR-21, each of which is known to up-regulate the expression of pro-inflammatory cytokines. Also the expression of SOCS1 and SHIP1 which are known targets of miR-155 was repressed by chitin treatment. The monoterpene phenol carvacrol (Car) and its isomer thymol (Thy) are found in herbal essential oils and have been shown to inhibit allergic inflammation in asthma models. We found that Car/Thy inhibited the effects of chitin on type 2-promoting cytokine release and on the expression of TLRs, SOCS1, SHIP1, and miRNAs. Car/Thy could also efficiently reduce the protein levels of TLR4, inhibit the increase in TLR2 protein levels in chitin plus Car/Thy-treated cells and increase the protein levels of SHIP1 and SOCS1, which are negative regulators of TLR-mediated inflammatory responses. We conclude that direct effects of chitin on airway epithelial cells are likely to contribute to allergic airway diseases like asthma, and that Car/Thy directly inhibits epithelial cell pro-inflammatory responses to chitin

    Comparison of reproducibility, accuracy, sensitivity, and specificity of miRNA quantification platforms

    Get PDF
    Given the increasing interest in their use as disease biomarkers, the establishment of reproducible, accurate, sensitive, and specific platforms for microRNA (miRNA) quantification in biofluids is of high priority. We compare four platforms for these characteristics: small RNA sequencing (RNA-seq), FirePlex, EdgeSeq, and nCounter. For a pool of synthetic miRNAs, coefficients of variation for technical replicates are lower for EdgeSeq (6.9%) and RNA-seq (8.2%) than for FirePlex (22.4%); nCounter replicates are not performed. Receiver operating characteristic analysis for distinguishing present versus absent miRNAs shows small RNA-seq (area under curve 0.99) is superior to EdgeSeq (0.97), nCounter (0.94), and FirePlex (0.81). Expected differences in expression of placenta-associated miRNAs in plasma from pregnant and non-pregnant women are observed with RNA-seq and EdgeSeq, but not FirePlex or nCounter. These results indicate that differences in performance among miRNA profiling platforms impact ability to detect biological differences among samples and thus their relative utility for research and clinical use

    An engineered cardiac reporter cell line identifies human embryonic stem cell-derived myocardial precursors.

    Get PDF
    Unlike some organs, the heart is unable to repair itself after injury. Human embryonic stem cells (hESCs) grow and divide indefinitely while maintaining the potential to develop into many tissues of the body. As such, they provide an unprecedented opportunity to treat human diseases characterized by tissue loss. We have identified early myocardial precursors derived from hESCs (hMPs) using an α-myosin heavy chain (αMHC)-GFP reporter line. We have demonstrated by immunocytochemistry and quantitative real-time PCR (qPCR) that reporter activation is restricted to hESC-derived cardiomyocytes (CMs) differentiated in vitro, and that hMPs give rise exclusively to muscle in an in vivo teratoma formation assay. We also demonstrate that the reporter does not interfere with hESC genomic stability. Importantly, we show that hMPs give rise to atrial, ventricular and specialized conduction CM subtypes by qPCR and microelectrode array analysis. Expression profiling of hMPs over the course of differentiation implicate Wnt and transforming growth factor-β signaling pathways in CM development. The identification of hMPs using this αMHC-GFP reporter line will provide important insight into the pathways regulating human myocardial development, and may provide a novel therapeutic reagent for the treatment of cardiac disease

    Differential gene expression by integrin β7(+ )and β7(- )memory T helper cells

    Get PDF
    BACKGROUND: The cell adhesion molecule integrin α4β7 helps direct the migration of blood lymphocytes to the intestine and associated lymphoid tissues. We hypothesized that β7(+ )and β7(- )blood memory T helper cells differ in their expression of genes that play a role in the adhesion or migration of T cells. RESULTS: RNA was prepared from β7(+ )and β7(- )CD4(+ )CD45RA(- )blood T cells from nine normal human subjects and analyzed using oligonucleotide microarrays. Of 21357 genes represented on the arrays, 16 were more highly expressed in β7(+ )cells and 18 were more highly expressed in β7(- )cells (≥1.5 fold difference and adjusted P < 0.05). Several of the differentially expressed transcripts encode proteins with established or putative roles in lymphocyte adhesion and chemotaxis, including the chemokine receptors CCR9 and CCR10, the integrin α4 subunit, L-selectin, KLRB1 (CD161), NT5E (CD73), LGALS1 and LGALS2 (galectin-1 and -2), and RGS1. Flow cytometry was used to determine whether differences in levels of transcripts encoding cell surface proteins were associated with differential expression of those proteins. Using this approach, we found that surface expression of KLRB1, LAIR1, and NT5E proteins was higher on β7(+ )memory/effector T cells than on β7(- )cells. CONCLUSIONS: Memory/effector T cells that express integrin β7 have a distinct pattern of expression of a set of gene transcripts. Several of these molecules can affect cell adhesion or chemotaxis and are therefore likely to modulate the complex multistep process that regulates trafficking of CD4(+ )memory T cell subsets with different homing behaviors
    • …
    corecore