310 research outputs found

    Increased number and altered phenotype of lymphatic vessels in peripheral lung compartments of patients with COPD

    Get PDF
    <p>Background De novo lymphatic vessel formation has recently been observed in lungs of patients with moderate chronic obstructive pulmonary disease (COPD). However, the distribution of lymphatic vessel changes among the anatomical compartments of diseased lungs is unknown. Furthermore, information regarding the nature of lymphatic vessel alterations across different stages of COPD is missing. This study performs a detailed morphometric characterization of lymphatic vessels in major peripheral lung compartments of patients with different severities of COPD and investigates the lymphatic expression of molecules involved in immune cell trafficking.</p> <p>Methods Peripheral lung resection samples obtained from patients with mild (GOLD stage I), moderate-severe (GOLD stage II-III), and very severe (GOLD stage IV) COPD were investigated for podoplanin-immunopositive lymphatic vessels in distinct peripheral lung compartments: bronchioles, pulmonary blood vessels and alveolar walls. Control subjects with normal lung function were divided into never smokers and smokers. Lymphatics were analysed by multiple morphological parameters, as well as for their expression of CCL21 and the chemokine scavenger receptor D6.</p> <p>Results The number of lymphatics increased by 133% in the alveolar parenchyma in patients with advanced COPD compared with never-smoking controls (p <0.05). In patchy fibrotic lesions the number of alveolar lymphatics increased 20-fold from non-fibrotic parenchyma in the same COPD patients. The absolute number of lymphatics per bronchiole and artery was increased in advanced COPD, but numbers were not different after normalization to tissue area. Increased numbers of CCL21- and D6-positive lymphatics were observed in the alveolar parenchyma in advanced COPD compared with controls (p <0.01). Lymphatic vessels also displayed increased mean levels of immunoreactivity for CCL21 in the wall of bronchioles (p < 0.01) and bronchiole-associated arteries (p < 0.05), as well as the alveolar parenchyma (p < 0.001) in patients with advanced COPD compared with never-smoking controls. A similar increase in lymphatic D6 immunoreactivity was observed in bronchioles (p <0.05) and alveolar parenchyma (p < 0.01).</p> <p>Conclusions This study shows that severe stages of COPD is associated with increased numbers of alveolar lymphatic vessels and a change in lymphatic vessel phenotype in major peripheral lung compartments. This novel histopathological feature is suggested to have important implications for distal lung immune cell traffic in advanced COPD.</p&gt

    Loss of size-selectivity at histamine-induced exudation of plasma proteins in atopic nasal airways.

    Get PDF
    Plasma proteins occur in the airway lumen in inflammatory airway diseases. This study tests the hypothesis that airway microvascular-epithelial exudation of plasma proteins, as induced by a non-injurious inflammatory mediator, is characterized by loss of size-selectivity. Using a nasal pool-device, the nasal mucosa of 10 allergic individuals, without current disease, was sequentially exposed to saline and histamine (40 and 400 microg ml(-1)). Nasal lavage fluid and blood-levels of albumin (69 kD) and alpha2-macroglobulin (720 kD) were determined. Histamine produced concentration-dependent exudation of albumin and alpha2-macroglobulin. The albumin/alpha2-macroglobulin concentration ratio of the saline lavage fluid (baseline) was 40+/-19. However, at the histamine challenges the ratios were 25+/-3 and 22+/-2, respectively, which did not differ from that of circulating plasma (22+/-2). We conclude that there is minor and size-selective luminal entry of plasma proteins at baseline. However, at concentration-dependent exudative responses to histamine, plasma proteins enter the airway lumen without being sieved. These data indicate that inflammatory stimulus-induced extravasation, lamina propria distribution and paracellular epithelial passage of plasma occur with minimal size-selectivity. Inferentially, the full immunological capacity of plasma proteins may readily be made available at the surface of human intact airway mucosa

    Increased number and altered phenotype of lymphatic vessels in peripheral lung compartments of patients with COPD

    Get PDF
    Background: De novo lymphatic vessel formation has recently been observed in lungs of patients with moderate chronic obstructive pulmonary disease (COPD). However, the distribution of lymphatic vessel changes among the anatomical compartments of diseased lungs is unknown. Furthermore, information regarding the nature of lymphatic vessel alterations across different stages of COPD is missing. This study performs a detailed morphometric characterization of lymphatic vessels in major peripheral lung compartments of patients with different severities of COPD and investigates the lymphatic expression of molecules involved in immune cell trafficking. Methods: Peripheral lung resection samples obtained from patients with mild (GOLD stage I), moderate-severe (GOLD stage II-III), and very severe (GOLD stage IV) COPD were investigated for podoplanin-immunopositive lymphatic vessels in distinct peripheral lung compartments: bronchioles, pulmonary blood vessels and alveolar walls. Control subjects with normal lung function were divided into never smokers and smokers. Lymphatics were analysed by multiple morphological parameters, as well as for their expression of CCL21 and the chemokine scavenger receptor D6. Results: The number of lymphatics increased by 133% in the alveolar parenchyma in patients with advanced COPD compared with never-smoking controls (p < 0.05). In patchy fibrotic lesions the number of alveolar lymphatics increased 20-fold from non-fibrotic parenchyma in the same COPD patients. The absolute number of lymphatics per bronchiole and artery was increased in advanced COPD, but numbers were not different after normalization to tissue area. Increased numbers of CCL21- and D6-positive lymphatics were observed in the alveolar parenchyma in advanced COPD compared with controls (p < 0.01). Lymphatic vessels also displayed increased mean levels of immunoreactivity for CCL21 in the wall of bronchioles (p < 0.01) and bronchiole-associated arteries (p < 0.05), as well as the alveolar parenchyma (p < 0.001) in patients with advanced COPD compared with never-smoking controls. A similar increase in lymphatic D6 immunoreactivity was observed in bronchioles (p < 0.05) and alveolar parenchyma (p < 0.01). Conclusions: This study shows that severe stages of COPD is associated with increased numbers of alveolar lymphatic vessels and a change in lymphatic vessel phenotype in major peripheral lung compartments. This novel histopathological feature is suggested to have important implications for distal lung immune cell traffic in advanced COPD

    Appearance of remodelled and dendritic cell-rich alveolar-lymphoid interfaces provides a structural basis for increased alveolar antigen uptake in chronic obstructive pulmonary disease.

    Get PDF
    RATIONALE: The alveolar pathology in chronic obstructive pulmonary disease (COPD) involves antigen-driven immune events. However, the induction sites of alveolar adaptive immune responses have remained poorly investigated. OBJECTIVES: To explore the hypothesis that interfaces between the alveolar lumen and lymphoid aggregates (LAs) provide a structural basis for increased alveolar antigen uptake in COPD lungs. METHODS: Lung samples from patients with mild (Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage I), moderate-severe (GOLD II-III), and very severe (GOLD IV) COPD were subjected to detailed histological assessments of adaptive immune system components. Never smokers and smokers without COPD served as controls. RESULTS: Quantitative histology, involving computerised three-dimensional reconstructions, confirmed a rich occurrence of alveolar-restricted LAs and revealed, for the first time, that the vast majority of vascular or bronchiolar associated LAs had alveolar interfaces but also an intricate network of lymphatic vessels. Uniquely to COPD lungs, the interface epithelium had transformed into a columnar phenotype. Accumulation of langerin (CD207)(+) dendritic cells occurred in the interface epithelium in patients with COPD but not controls. The antigen-capturing capacity of langerin(+) dendritic cells was confirmed by increased alveolar protrusions and physical T cell contact. Several of these immune remodelling parameters correlated with lung function parameters. CONCLUSIONS: Severe stages of COPD are associated with an emergence of remodelled and dendritic cell-rich alveolar-lymphoid interfaces. This novel type of immune remodelling, which predicts an increased capacity to respond to alveolar antigens, is suggested to contribute to aggravated inflammation in COPD

    Enhanced ROCK1 dependent contractility in fibroblast from chronic obstructive pulmonary disease patients

    Get PDF
    Background: During wound healing processes fibroblasts account for wound closure by adopting a contractile phenotype. One disease manifestation of COPD is emphysema which is characterized by destruction of alveolar walls and our hypothesis is that fibroblasts in the COPD lungs differentiate into a more contractile phenotype as a response to the deteriorating environment. Methods: Bronchial (central) and parenchymal (distal) fibroblasts were isolated from lung explants from COPD patients (n = 9) (GOLD stage IV) and from biopsies from control subjects and from donor lungs (n = 12). Tissue-derived fibroblasts were assessed for expression of proteins involved in fibroblast contraction by western blotting whereas contraction capacity was measured in three-dimensional collagen gels. Results: The basal expression of rho-associated coiled-coil protein kinase 1 (ROCK1) was increased in both centrally and distally derived fibroblasts from COPD patients compared to fibroblasts from control subjects (p < 0.001) and (p < 0.01), respectively. Distally derived fibroblasts from COPD patients had increased contractile capacity compared to control fibroblasts (p < 0.01). The contraction was dependent on ROCK1 activity as the ROCK inhibitor Y27632 dose-dependently blocked contraction in fibroblasts from COPD patients. ROCK1-positive fibroblasts were also identified by immunohistochemistry in the alveolar parenchyma in lung tissue sections from COPD patients. Conclusions: Distally derived fibroblasts from COPD patients have an enhanced contractile phenotype that is dependent on ROCK1 activity. This feature may be of importance for the elastic dynamics of small airways and the parenchyma in late stages of COPD

    Patients with allergic rhinitis and allergic asthma share the same pattern of eosinophil and neutrophil degranulation after allergen challenge

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with allergic rhinitis and allergic asthma demonstrate comparable local and systemic eosinophil inflammation, and yet they present with different clinical pictures. Less is even known about the contribution of neutrophil inflammation in allergic diseases. The aim of the study was to examine the propensity and selectivity of granule release from primed systemic eosinophils and neutrophils in allergic rhinitis and allergic asthma after seasonal and experimental allergen exposure. We hypothesize that the dissimilar clinical manifestations are due to diverse eosinophil and neutrophil degranulation.</p> <p>Methods</p> <p>Nine birch pollen allergic patients with rhinitis, eight with asthma and four controls were studied during pollen season and after nasal and bronchial allergen challenge. Eosinophils and neutrophils were incubated in vitro with assay buffer and opsonized Sephadex particles for spontaneous and C3b-induced granule protein release. The released amount of eosinophil cationic protein (ECP), eosinophil peroxidase (EPO) and myeloperoxidase (MPO) was measured by specific radioimmunoassay.</p> <p>Results</p> <p>C3b-induced degranulation resulted in increased release of ECP and MPO from primed blood eosinophils and neutrophils in both allergic rhinitis and allergic asthma during pollen season and after both nasal and bronchial challenge (p-values 0.008 to 0.043). After bronchial challenge, the ECP release was significantly higher in the rhinitic group compared to the asthmatic group [19.8 vs. 13.2%, (p = 0.010)]. The propensity for EPO release was weak in all challenge models but followed the same pattern in both allergic groups.</p> <p>Conclusions</p> <p>Systemically activated eosinophils and neutrophils have similar patterns of degranulation after allergen exposure in allergic rhinitis and allergic asthma. The released amount of ECP, EPO and MPO was similar in all allergen challenge models in both allergic groups. Our results indicate that other mechanisms than the magnitude of eosinophil and neutrophil inflammation or the degranulation pattern of the inflammatory cells determines whether or not an allergic patient develops asthma.</p

    Allergic Eosinophil-rich Inflammation Develops in Lungs and Airways of B Cell–deficient Mice

    Get PDF
    Immunoglobulins (Ig), particularly IgE, are believed to be crucially involved in the pathogenesis of asthma and, equally, in allergic models of the disease. To validate this paradigm we examined homozygous mutant C57BL/6 mice, which are B cell deficient, lacking all Ig. Mice were immunized intraperitoneally with 10 ÎŒg ovalbumin (OVA) plus alum, followed by daily (day 14–20) 30 min exposures to OVA aerosol (OVA/OVA group). Three control groups were run: OVA intraperitoneally plus saline (SAL) aerosol (OVA/SAL group); saline intraperitoneally plus saline aerosol; saline intraperitoneally plus OVA aerosol (n = 6–7). Lung and large airway tissues obtained 24 h after the last OVA or SAL exposure were examined by light microscopy and transmission electron microscopy (TEM). The Ig-deficient mice receiving OVA/ OVA treatment had swollen and discolored lungs and exhibited marked eosinophilia both in large airway subepithelial tissue (49.2 ± 12.0 cells/mm basement membrane [BM] versus OVA/ SAL control 1.2 ± 0.3 cells/mm BM; P <0.001), and perivascularly and peribronchially in the lung (49.3 ± 9.0 cells/unit area versus OVA/SAL control 2.6 ± 0.6 cells/unit area; P <0.001). The eosinophilia extended to the regional lymph nodes. TEM confirmed the subepithelial and perivascular localization of eosinophils. Mucus cells in large airway epithelium increased from 1.5 ± 0.8 (OVA/SAL mice) to 39.5 ± 5.7 cells/mm BM in OVA/OVA treated mice (P <0.001). OVA/SAL mice never differed from the other control groups. Corresponding experiments in wild-type mice (n = 6–7 in each group) showed qualitatively similar but less pronounced eosinophil and mucus cell changes. Macrophages and CD4+ T cells increased in lungs of all OVA/OVA-treated mice. Mast cell number did not differ but degranulation was detected only in OVA/OVA-treated wild-type mice. Immunization to OVA followed by OVA challenges thus cause eosinophil-rich inflammation in airways and lungs of mice without involvement of B cells and Ig

    Alkaline sphingomyelinase (NPP7) impacts the homeostasis of intestinal T lymphocyte populations

    Get PDF
    Background and aimAlkaline sphingomyelinase (NPP7) is expressed by intestinal epithelial cells and is crucial for the digestion of dietary sphingomyelin. NPP7 also inactivates proinflammatory mediators including platelet-activating factor and lysophosphatidylcholine. The aim of this study was to examine a potential role for NPP7 in the homeostasis of the intestinal immune system.MethodsWe quantified the numbers of B-lymphocytes, plasma cells, T-lymphocytes including regulatory T-lymphocytes (Tregs), natural killer cells, dendritic cells, macrophages, and neutrophils, in the small and large intestines, the mesenteric lymph nodes and the spleens of heterozygous and homozygous NPP7 knockout (KO) and wildtype (WT) mice. Tissues were examined by immunohistochemistry and stainings quantified using computerized image analysis.ResultsThe numbers of both small and large intestinal CD3Δ+, CD4+, and CD8α+ T-lymphocytes were significantly higher in NPP7 KO compared to WT mice (with a dose-response relationship in the large intestine), whereas Treg numbers were unchanged, and dendritic cell numbers reduced. In contrast, the numbers of CD3Δ+ and CD4+ T-lymphocytes in mesenteric lymph nodes were significantly reduced in NPP7 KO mice, while no differences were observed in spleens. The numbers of B-lymphocytes, plasma cells, natural killer cells, macrophages, and neutrophils were similar between genotypes.ConclusionNPP7 contributes to the regulation of dendritic cell and T-lymphocyte numbers in mesenteric lymph nodes and both the small and large intestines, thus playing a role in the homeostasis of gut immunity. Although it is likely that the downstream effects of NPP7 activity involve the sphingomyelin metabolites ceramide and spingosine-1-phosphate, the exact mechanisms behind this regulatory function of NPP7 need to be addressed in future studies

    Airway Epithelial Cell Migration Dynamics: Mmp-9 Role in Cell–Extracellular Matrix Remodeling

    Get PDF
    Cell spreading and migration associated with the expression of the 92-kD gelatinase (matrix metalloproteinase 9 or MMP-9) are important mechanisms involved in the repair of the respiratory epithelium. We investigated the location of MMP-9 and its potential role in migrating human bronchial epithelial cells (HBEC). In vivo and in vitro, MMP-9 accumulated in migrating HBEC located at the leading edge of a wound and MMP-9 expression paralleled cell migration speed. MMP-9 accumulated through an actin-dependent pathway in the advancing lamellipodia of migrating cells and was subsequently found active in the extracellular matrix (ECM). Lamellipodia became anchored through primordial contacts established with type IV collagen. MMP-9 became amassed behind collagen IV where there were fewer cell–ECM contacts. Both collagen IV and MMP-9 were involved in cell migration because when cell–collagen IV interaction was blocked, cells spread slightly but did not migrate; and when MMP-9 activation was prevented, cells remained fixed on primordial contacts and did not advance at all. These observations suggest that MMP-9 controls the migration of repairing HBEC by remodeling the provisional ECM implicated in primordial contacts

    Effects of a dual CCR3 and H1-antagonist on symptoms and eosinophilic inflammation in allergic rhinitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The CC-chemokine receptor-3 (CCR3) has emerged as a target molecule for pharmacological intervention in allergic inflammation.</p> <p>Objective</p> <p>To examine whether a dual CCR3 and H<sub>1</sub>-receptor antagonist (AZD3778) affects allergic inflammation and symptoms in allergic rhinitis.</p> <p>Methods</p> <p>Patients with seasonal allergic rhinitis were subjected to three seven days' allergen challenge series. Treatment with AZD3778 was given in a placebo and antihistamine-controlled design. Symptoms and nasal peak inspiratory flow (PIF) were monitored in the morning, ten minutes post challenge, and in the evening. Nasal lavages were carried out at the end of each challenge series and α<sub>2</sub>-macroglobulin, ECP, and tryptase were monitored as indices of allergic inflammation.</p> <p>Results</p> <p>Plasma levels of AZD3778 were stable throughout the treatment series. AZD3778 and the antihistamine (loratadine) reduced rhinitis symptoms recorded ten minutes post challenge during this period. AZD3778, but not the anti-histamine, also improved nasal PIF ten minutes post challenge. Furthermore, scores for morning and evening nasal symptoms from the last five days of the allergen challenge series showed statistically significant reductions for AZD3778, but not for loratadine. ECP was reduced by AZD3778, but not by loratadine.</p> <p>Conclusions</p> <p>AZD3778 exerts anti-eosinophil and symptom-reducing effects in allergic rhinitis and part of this effect can likely be attributed to CCR3-antagonism. The present data are of interest with regard to the potential use of AZD3778 in allergic rhinitis and to the relative importance of eosinophil actions to the symptomatology of allergic rhinitis.</p> <p>Trial registration</p> <p>EudraCT No: 2005-002805-21.</p
    • 

    corecore