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Alkaline sphingomyelinase
(NPP7) impacts the
homeostasis of intestinal
T lymphocyte populations
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University, Lund, Sweden, 3Department of Health Technology, Technical University of Denmark,
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Background and aim: Alkaline sphingomyelinase (NPP7) is expressed by

intestinal epithelial cells and is crucial for the digestion of dietary

sphingomyelin. NPP7 also inactivates proinflammatory mediators including

platelet-activating factor and lysophosphatidylcholine. The aim of this study

was to examine a potential role for NPP7 in the homeostasis of the intestinal

immune system.

Methods: We quantified the numbers of B-lymphocytes, plasma cells, T-

lymphocytes including regulatory T-lymphocytes (Tregs), natural killer cells,

dendritic cells, macrophages, and neutrophils, in the small and large

intestines, the mesenteric lymph nodes and the spleens of heterozygous and

homozygous NPP7 knockout (KO) and wildtype (WT) mice. Tissues were

examined by immunohistochemistry and stainings quantified using

computerized image analysis.

Results: The numbers of both small and large intestinal CD3e+, CD4+, and

CD8a+ T-lymphocytes were significantly higher in NPP7 KO compared to WT

mice (with a dose-response relationship in the large intestine), whereas Treg
numbers were unchanged, and dendritic cell numbers reduced. In contrast, the

numbers of CD3e+ and CD4+ T-lymphocytes in mesenteric lymph nodes were

significantly reduced in NPP7 KO mice, while no differences were observed in

spleens. The numbers of B-lymphocytes, plasma cells, natural killer cells,

macrophages, and neutrophils were similar between genotypes.

Conclusion: NPP7 contributes to the regulation of dendritic cell and T-

lymphocyte numbers in mesenteric lymph nodes and both the small and

large intestines, thus playing a role in the homeostasis of gut immunity.
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Although it is likely that the downstream effects of NPP7 activity involve the

sphingomyelin metabolites ceramide and spingosine-1-phosphate, the exact

mechanisms behind this regulatory function of NPP7 need to be addressed in

future studies.
KEYWORDS

alkaline sphingomyelinase, NPP7, inflammatory bowel disease, intestine, knockout,
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Introduction

Alkaline sphingomyelinase, also named nucleotide

pyrophosphatase phosphodiesterase 7 (NPP7) (1), is an

ectoenzyme that was discovered and characterized by our

group (2, 3), is expressed selectively by the intestinal and in

humans biliary epithelia, and is important for the digestion of

dietary sphingomyelin (SM) (4). While the colon displays some

NPP7 activity, the highest activity is seen in the small intestine

(4). The enzyme, which is protease-resistant, can be shed from

the epithelia where it is expressed, and enzymatic activity can

readily be detected in both bile and feces (5).

In addition to SM, other substrates for NPP7 are platelet

activating factor (PAF) and lysophosphatidylcholine (lyso-PC)

which both are proinflammatory mediators (1). NPP7 has the

ability to cleave the phosphocholine headgroup off from these

phospholipids, producing various lipid metabolites. The enzyme

thus has several branches of downstream metabolic pathways

with the generation of a number of lipid messengers that have

different biologic effects. Ceramide and sphingosine, which are

produced when NPP7 digests either exogenous or endogenous

SM, are lipid mediators that inhibit cell proliferation, induce

apoptosis, and may counteract carcinogenesis (6). A

downstream metabolite of ceramide and sphingosine is

sphingosine-1-phosphate (S1P) which has been implicated in

angiogenesis, innate and adaptive immunity, lymphocyte

trafficking, and the pathophysiology of inflammatory bowel

disease through contributing to the activation of the IL-6/

STAT3 and NFkB pathways, as well as the pathogenesis of

colon cancer (7). S1P has effects both locally in the intestinal
ate sodium; F, female;

s; KO, knockout; LPA,

line; M, male; MLN,

, natural killer; NPP7,

F, platelet activating

of interest; RT, room

-1-phosphate; Tregs,
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mucosa as well as in lymph nodes where it directs the egress of

lymphocytes from the lymph nodes to efferent lymphatic vessels

from where the cells are transported to the blood circulation (7).

By hydrolysis, NPP7 can inactivate PAF which has

proinflammatory properties including MAP kinase activation,

chemotaxis, and cytokine release, and has been implicated in

ulcerative colitis (8). By converting lyso-PC to monoacylglycerol,

NPP7 activity leads to decreased formation of lysophosphatidic

acid (LPA) which has several proinflammatory effects including

activation of Ras, Rac, and PI3 kinase (4, 9). Thus, NPP7 activity

is thought to have both anti-inflammatory and anti-carcinogenic

effects (1). Indeed, decreased NPP7 activity levels have been

found in ulcerative colitis, colonic carcinoma, sporadic

adenomas, and familial adenomatous polyposis (FAP) (1).

Furthermore, in a rat dextran sulphate sodium (DSS) colitis

model, rectal instillation of recombinant NPP7 was shown to

alleviate colitis activity (10), and in a murine DSS colitis model

NPP7 knockout (KO) mice were shown to have more severe

colitis activity with increased levels of PAF, LPA, and autotaxin

(8). Finally, dietary SM has been shown to inhibit carcinogen-

induced colon cancer in an animal model (11), and colitis-

associated colon cancer was enhanced in NPP7 KO mice (12).

In contrast to most other tissues in the body, the gut is

characterized by an ever present physiological low-grade degree

of immunological activity, maintaining a balance between

immunity to pathogens and neoplastic epithelial cells on the

one hand, and immune tolerance to innocuous antigens from

food and commensal bacteria on the other (13). A large number

of various immune cell populations are normally present and

cooperate in a complex network in the gut mucosa to keep this

balance, including CD4+ and CD8+ T-cells, regulatory T-cells

(Treg), B-cells, natural killer (NK) cells, innate lymphoid cells

(ILC), plasma cells, macrophages, and dendritic cells (DC) (13).

Naïve lymphocytes are activated and proliferate in draining

mesenteric lymph nodes or Peyer’s patches, and home

subsequently to the gut mucosa (14). Understanding how this

network is regulated is of highest importance, since numerous

severe diseases, including inflammatory bowel disease and

colitis-associated colorectal cancer, emerge when there is a

dysregulation of the system (13).
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The effects of NPP7 deficiency on the gut-related immune

system under homeostatic conditions have not been studied.

Therefore, the aim of this study was to characterize the

immunological phenotype of NPP7 KO mice, by examining

major immune cell populations in NPP7-related immunological

compartments using computer-assisted quantitative image

analysis of immune-stained tissue sections from homozygous

and heterozygous NPP7 deficient mice, and wildtype mice. The

results showed significant differences primarily in T-lymphocyte

populations in specific anatomical compartments, suggesting a

role for NPP7 in the homeostasis of intestinal immunity.
Materials and methods

Animals

NPP7 deficient mice were originally generated by members

of our group (Duan and his coworkers) at our university using

the Cre-LoxP system, as previously described (5). C57BL/6

NPP7 heterozygous (HT) mice were used for breeding, and

littermates were used for experiments. The genotypes of the

littermates were defined by PCR as previously described (5).

PCR results, protein expression, and NPP7 enzyme activity has

previously been confirmed to fully correlate (5). All mice were

bred and housed under specific pathogen-free conditions in

isolated ventilated cages at the Biomedical Centre (BMC),

Lund University, Lund, Sweden. Mice were weaned at 3 weeks

of age and fed commercial standard pellets with free access to

water. Tissues were collected from 16 NPP7+/+ wildtype (WT;

female [F]/male [M] ratio 6/10), 27 NPP7+/− HT (F/M 15/12),

and 23 NPP7−/− KO (F/M 9/14) mice, at 5 weeks of age. Mice

were euthanized by cervical dislocation under complete

isoflurane inhalation anesthesia and sedation. All procedures

were performed with the consent from the regional animal

research ethics committee (M57-08, M177-10) and in

accordance with Swedish animal protection laws.
Tissue collection and preparation

The middle 4 cm of the small and large intestine,

respectively, the mesenteric lymph nodes (MLN), and the

spleen were collected from each mouse. Tissues were fixed in

phosphate buffered saline (PBS) with 4% paraformaldehyde for

20 hours at room temperature (RT), dehydrated through a series

of immersions in graded ethanol, and embedded in paraffin. The

tissue blocks were sectioned (thickness 4 mm) using a microtome

(Thermo Fisher Scientific) and slides placed onto a waterbath

(40°C) for 2 minutes to reduce wrinkles. Sections were

transferred to positively charged slides (Dako FLEX IHC

Microscope Slides, Dako), and left to dry (24 hours at RT).

Slides were heated in an oven at 60°C for 30 minutes, followed by
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deparaffinization with xylene and then rehydration. Antigen

retrieval was performed by incubations in either high or low

pH heat-induced epitope retrieval solution (HIER; DAKO-

DM829, Dako) in a HIER apparatus (PT-link 200, Dako).

Slides were allowed to cool at room temperature for 30

minutes, followed by a wash in PBS.
Immunostaining of tissues

Tissue sections were encircled by a hydrophobic barrier

using a PAP pen. Sections were incubated with hydrogen

peroxide for 10 minutes at RT, followed by a 20-minute

incubation with 2.5% normal horse serum (Vector

Laboratories), and either 2.5% normal goat serum or Rodent

Block M (BioCare) depending on whether the secondary

antibody host was goat or rat, respectively. Sections were

incubated with a primary antibody either 1 hour at RT or

overnight at 4°C. Isotype-matched antibodies were used as

negative controls. Primary antibodies (clone) detecting the

following antigens were used: CD3e (CD3-12, Abcam;

polycloncal, Thermo Fisher Scientific); CD4 (50134-R001,

SinoBiological); CD8a (D4W2Z, Cell Signaling); FoxP3

(D6O8R, Cell Signaling); CD19 (D4V4B, Cell Signaling); B220

(RA3-6B2, Thermo Fisher Scientific); CD138 (mSDC1, R&D);

IgA (RM220, Novus Biologics); CD11c (D1V9Y, Cell Signaling);

CD163 (EPR19518, Abcam); F4/80 (D2S9R, Cell Signaling);

Zap70 (99F2, Cell Signaling); myeloperoxidase (PA5-16672,

Thermo Fisher Scientific). For some stainings, antibodies to

CD19 and B220, and CD163 and F4/80, respectively, were

applied as cocktails. After incubation with the primary

antibody, sections were washed with PBS wash buffer, and

immunoreactivity was visualized using the secondary antibody

ImmPRESS® peroxidase (HRP) polymer detection system

according to the manufacturer’s instructions (Vector

Laboratories) in combination with chromogenic substrates

(DAB [Dako] for single staining, and Vina Green [BioCare] in

addition for double staining). After chromogen development,

slides were counterstained with hematoxylin, and coverslipped.
Computerized quantitative
image analysis

Immunohistochemically stained tissue sections were

digitized using a slide-scanning robot (ScanScope, Aperio

Technologies). High-resolution digital images of the entire

section areas were generated for all mice, organs, and tissue

sections, and subjected to computerized quantitative analysis.

Immunoreactivity-positive areas and negative tissue areas were

color-coded and processed using the software Visiomorph™

(Visiopharm) as shown in Supplementary Figure E. Relevant

tissue areas to be analyzed were designated Region of Interest
frontiersin.org
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(ROI) for intestinal and secondary lymphoid tissues,

respectively, as shown in Supplementary Figures F, G.

Immunoreactivity-positive signals were quantified using

Visiomorph™. Positive areas were normalized to the ROI

analyzed, and data are presented as positive tissue fraction

(positivity, %). The positivity directly reflects the number of

cells, and these terms are thus used interchangeably.

Certain celltypes were defined by being positive for some

specific cellular markers while being negative for others. This

was made possible digitally in the computerized analysis by

quenching the areas positive for markers denoting irrelevant

cells leaving only the celltype of interest to be quantified.

Quenched areas were included in the denominator area-value

denoting the entire tissue section.
Statistical analysis

Data are presented as individual data points and as group

mean values with standard deviations unless otherwise stated.

Each individual data point is the mean value of two separate

analyses of the same mouse and tissue. Comparisons between

groups were tested for statistical significance using a one-way

ANOVA with Tukey’s multiple comparison test. Data sets were

examined regarding distribution characteristics using the

D’Agostino-Pearson normality test before applying a

parametric test. P<0.05 was considered statistically significant.

Statistical analyses were performed using GraphPad Prism

version 9.4.1 for MacOS (GraphPad Software).
Results

NPP7 deficient mice have increased
numbers of T-lymphocytes in the small
intestinal mucosa, whereas dendritic cell
numbers are decreased

To assess a potential role for NPP7 in the homeostasis of gut

T-lymphocytes, small intestinal tissues were stained for CD3e
and computerized image analysis was applied to quantify the

expression (Figure 1A). The positive tissue fractions, which

reflect the numbers of cells, were compared between WT, HT,

and KO mice. The number of small intestinal CD3e+ cells was

approximately 36% higher in KO and HTmice compared to WT

mice (Figure 1B). Analysis of T-lymphocyte subsets, staining for

CD4 and CD8a, showed similar differences for both subsets, but

with a somewhat less clear impact on the CD8a+ T-lymphocyte

population (Figure 1B). By contrast, regulatory T-lymphocytes

(Tregs) defined as FoxP3+ cells did not show differences between

the groups (Figure 1C).
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Investigating the numbers of B-lymphocytes (stained by a

cocktail of B220 and CD19), CD138+ plasma cells, IgA+ cells,

and Zap70+CD3e− natural killer (NK) cells in the small intestinal

mucosa, we found no significant differences between the groups,

although the CD138+, IgA+, and Zap70+CD3e− cells were

numerically fewer in the KO mice (Figures 1D–G).

Examining myeloid cell populations in the small intestine,

we found a significant decrease in the number of CD11c+F4/

80−CD163− dendritic cells (DCs) in NPP7 KO and HT mice

(Figure 1H), but macrophages (stained by a cocktail of F4/80 and

CD163 antibodies) and neutrophils (MPO+ cells) did not show

significant differences between the groups (Figures 1I–K).
NPP7 deficiency has similar effects on T-
lymphocyte populations in the large
intestine as in the small intestine

Computerized quantification of the expression of T-

lymphocyte markers showed that KO mice had more than

twice as many (209%) CD3e+ T-lymphocytes in the large

intestinal mucosa compared to WT mice (Figure 2A).

Analyses of CD4+ and CD8a+ T-lymphocyte subsets showed

similar findings (Figure 2A). There was a distinct dose-response

relationship observed with regards to no NPP7 deficiency, and

heterozygous and homozygous NPP7 deficiency, for CD3e+,
CD4+, and CD8a+ T-lymphocytes, respectively (Figure 2A).

By contrast, there were no differences in the number of

FoxP3+ Tregs between the groups (Figure 2B).

Quantifications of B-lymphocytes, CD138+ plasma cells,

IgA+ cells, and Zap70+CD3e− NK cells in the large intestinal

mucosa showed no significant differences between the groups,

although the CD138+, IgA+, and Zap70+CD3e− cells were

numerically fewer in the KO mice (Figures 2C–F). Similarly,

the myeloid cell populations in the large intestine including DCs,

macrophages, and neutrophils did not display significant

differences between the groups (Figures 2G–I).
Mesenteric lymph nodes of NPP7
deficient mice display reduced numbers
of T-lymphocytes and dendritic cells

In contrast to the results from the small and large intestines,

quantitative image analyses of mesenteric lymph nodes (MLNs)

(Figure 3A) showed a numerical reduction of CD3e+ T-

lymphocytes in NPP7 KO and HT mice compared to WT mice

but the differences were not statistically significant (Figure 3B).

Analysis of CD4+ T-lymphocytes showed a similar pattern as for

CD3e+ T-lymphocytes but with statistically significant differences
frontiersin.org
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FIGURE 1

Quantitative analyses of immune cells in the small intestinal mucosa showed an increase in T-lymphocytes in NPP7 KO mice. Small intestines from
NPP7 HT and KO mice, and WT mice, were stained for various immune cell populations by immunohistochemistry. Computerized image analysis
was used to quantify positivity (stained fraction of tissue area) reflecting cell numbers. (A) Representative bright-field images of small intestines from
WT mouse (left) and NPP7 KO mouse (right), out of 32 and 46 images, respectively, illustrating the staining for CD3e+ T-lymphocytes in brown (DAB
chromogen) and the quantitative image analysis for CD3e+ T-lymphocytes shown in red; (B) CD3e+, CD4+ and CD8a+ T-lymphocytes; (C) Foxp3+

Tregs; (D) B-lymphocytes; (E) CD138+ plasma cells; (F) IgA+ cells; (G) Zap70+CD3e− NK cells; (H) Representative images of small intestine from WT
mouse (left) and NPP7 KO mouse (right), out of 32 and 46 images, respectively, illustrating the quantitative image analysis for CD11c+F4/80−CD163−

DCs shown in orange; (I) CD11c+F4/80−CD163− DCs; (J) Macrophages; and (K) MPO+ neutrophils. Each dot represents an individual mouse and is
the mean of two staining experiments. Columns show the group mean ± SD. *P<0.05, **P<0.001, ***P<0.001.
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(Figure 3B), whereas CD8a+ T-lymphocyte levels were similar

between the groups (Figure 3B). The latter was true for the

FoxP3+ Tregs as well (Figure 3C).

Analyses of B-lymphocytes, CD138+ plasma cells, and IgA+

cel l s (Figures 3D–F) , and Zap70+CD3e− NK cel ls

(Supplementary Figure A) in MLNs showed similar numbers

of cells comparing WT, HT, and KO mice.

Quantifications of CD11c+F4/80−CD163− DCs in MLNs

(Figure 3G) showed numerically lower numbers in NPP7 HT

and KO mice compared to WT mice, but the differences were

not statistically significant (Figure 3H). The numbers of

macrophages (Figure 3I) and neutrophils (Supplementary

Figure B) in MLNs were similar between the groups.
Frontiers in Immunology 06
NPP7 deficiency does not affect
lymphoid or myeloid cell populations in
the spleen

The same type of computerized quantitative image

analyses as for the other organs were performed for spleens

from WT, and NPP7 HT and KO mice. No significant

differences between the groups were observed for CD3e+,
CD4+, or CD8a+ T-lymphocytes , FoxP3+ Treg s , B-

lymphocytes, CD138+ plasma cells, IgA+ cells, CD11c+F4/

8 0 −CD163 − DCs , mac rophag e s ( F i gu r e s 4A–G) ,

Zap70+CD3e− NK cells or neutrophils (Supplementary

Figures C, D).
A B

D E F

G IH

C

FIGURE 2

Quantitative analyses of immune cells in the large intestinal mucosa of NPP7 KO mice showed a doubling in T-lymphocyte numbers. Large
intestines from NPP7 HT and KO mice, and WT mice, were stained for various immune cell populations by immunohistochemistry.
Computerized image analysis was used to quantify positivity (stained fraction of tissue area) reflecting cell numbers. (A) CD3e+, CD4+ and
CD8a+ T-lymphocytes; (B) Foxp3+ Tregs; (C) B-lymphocytes; (D) CD138+ plasma cells; (E) IgA+ cells; (F) Zap70+CD3e− NK cells; (G) CD11c+F4/
80−CD163− DCs; (H) Macrophages; and (I) MPO+ neutrophils. Each dot represents an individual mouse and is the mean of two staining
experiments. Columns show the group mean ± SD. *P<0.05, **P<0.001.
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FIGURE 3

Quantitative analyses of immune cells in mesenteric lymph nodes (MLNs) showed a reduction in CD4+ T-lymphocytes in NPP7 KO mice. MLNs from
NPP7 HT and KO mice, and WT mice, were stained for various immune cell populations by immunohistochemistry. Computerized image analysis was
used to quantify positivity (stained fraction of tissue area) reflecting cell numbers. (A) Representative images of MLNs from WT mouse (left) and NPP7 KO
mouse (right), out of 32 and 46 images, respectively, illustrating the staining of CD3e+ T-lymphocytes in brown (DAB chromogen); (B) CD3e+, CD4+ and
CD8a+ T-lymphocytes; (C) Foxp3+ Tregs; (D) B-lymphocytes; (E) CD138+ plasma cells (F) IgA+ cells; (G) Representative images of MLNs from WT mouse
(left) and NPP7 KO mouse (right), out of 32 and 46 images, respectively, illustrating the staining of macrophages in brown (DAB chromogen) and DCs in
green (Vina green chromogen) [upper panels], and quantitative image analysis of CD11c+F4/80−CD163− DCs shown in green with the macrophage
signal quenched [lower panels]; (H) CD11c+F4/80−CD163− DCs; and (I) Macrophages. Each dot represents an individual mouse and is the mean of two
staining experiments. Columns show the group mean ± SD, ***P<0.001.
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Discussion

In the current study, we quantified major immune cell

populations of the small and large intestines, the MLNs, and

the spleens of NPP7 HT and KO mice, and WT mice, by means

of quantitative image analysis, with the aim to investigate a

potential role for NPP7 in the homeostasis of the gut immune

system, which in turn is of central importance in numerous

diseases including inflammatory bowel disease and colorectal

cancer. Interestingly, the numbers of T-lymphocytes were
Frontiers in Immunology 08
increased by 36% in the small intestinal mucosa and by 109%

in the colonic mucosa of NPP7 KO mice compared to WT mice,

whereas T-lymphocyte numbers were similar or decreased in the

MLNs of NPP7 KO mice. Numbers of DCs in NPP7 KO mice

were significantly decreased in the small intestine, but did not

show significant changes in the MLNs. The other immune cell

populations examined, including Tregs, were similar in numbers

between genotypes. These data demonstrate that NPP7 plays an

important role in regulating the homeostasis of effector T-

lymphocytes of the gut mucosa.
A B

D E

F G

C

FIGURE 4

Quantitative analyses of immune cells in spleens did not show any significant differences comparing WT and NPP7 deficient mice. Spleens from
NPP7 HT and KO mice, and WT mice, were stained for various immune cell populations by immunohistochemistry. Computerized image analysis
was used to quantify positivity (stained fraction of tissue area) reflecting cell numbers. (A) CD3e+, CD4+ and CD8a+ T-lymphocytes; (B) Foxp3+ Tregs;
(C) B-lymphocytes; (D) CD138+ plasma cells; (E) IgA+ cells; (F) CD11c+F4/80−CD163− DCs; and (G) Macrophages. Each dot represents an individual
mouse and is the mean of two staining experiments. Columns show the group mean ± SD.
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Several studies have shown an association between reduced

NPP7 levels and colonic inflammation as wel l as

adenocarcinoma. Patients with ulcerative colitis had decreased

NPP7 levels in biopsies compared to controls (15) and low levels

of NPP7 have also been found in colon cancer as well as fecal

samples from patients with colon cancer (16, 17). Conversely,

when recombinant NPP7 was given rectally, colitis was alleviated

in a rat DSS-colitis model (10), and in calves it was shown that

an upregulation of NPP7 is part of an immunosuppressive

response to asymptomatic chronic enteric colonization with

enterohemorrhagic Escherichia coli (18). NPP7 thus plays a

role in counteract ing intest inal inflammation and

carcinogenesis, but the exact mechanisms behind these

functions are not fully elucidated.

To link our findings to currently known functions of NPP7,

several potential mechanisms may be suggested. NPP7 is known

to hydrolyze and inactivate PAF, a paracrine messenger that

stimulates leukocyte as well as lymphocyte migration (19).

Furthermore, NPP7 hydrolyzes lyso-PC to monoglyceride and

phosphocholine whereas autotaxin (NPP2), an ectoenzyme

belonging to the same family as NPP7, hydrolyzes lyso-PC to

generate LPA, a paracrine messenger that stimulates cell

migration and proliferation (20). During induction of colitis

with DSS, NPP7 KO mice exhibited an earlier rise in PAF in the

colonic mucosa compared to WT mice (8). Mucosal LPA and

autotaxin also increased more in NPP7 KO mice, but with a

slower time course than PAF (8).

Chen et al. showed that NPP7 KO mice had a significant

reduction of ceramide levels in the small intestine but not the

colon (12), which is in agreement with NPP7 expression levels

being higher in the small intestine as compared with the colon

(4). Our data on the other hand showed a stronger effect of NPP7

deficiency on the T-lymphocyte numbers in the colon as

compared with the small intestine.

Increased S1P-levels have been observed in various

inflammatory diseases, mediating recruitment of immune cells

and enhancing inflammation, but immune-regulatory functions

have also been assigned to S1P (21–23). The regulation of S1P-

levels in tissues is complex, involves several separate metabolic

pathways, and can be adjusted at either steps of synthesis or

degradation (23). Absorbed sphingosine, generated from the

sequential action of NPP7 and mucosal ceramidase, is converted

in the mucosa to S1P, most of which is further metabolized to

palmitaldehyde and ultimately to palmitic acid and incorporated

into chylomicron triglyceride (24). Nevertheless, some of the

generated S1P may exert effects in the mucosal compartment via

both paracrine receptor-mediated and direct intracellular

signalling, and thereby regulate lymphocyte recruitment (25,

26). S1P may act directly on immune cells, but may also regulate

T-cell recruitment by affecting mucosal endothelial cells, which

also express S1P-receptors (23, 27). Although S1P has local

mucosal effects, S1P has primarily been studied with regards to

its effects in lymph nodes, where S1P mediates the egress of
Frontiers in Immunology 09
lymphocytes, and when S1P-receptors are pharmacologically

downregulated, lymphocytes are prevented from leaving the

lymph node leading to a systemic decrease in lymphocyte

numbers (22, 28, 29). Intracellular enzymes including other

sphingomyelinases, i.e. sphingomyelin phosphodiesterases

(SMPD) 1-5, and sphingosine kinases (SPHK) 1-2 are also

important for the regulation of S1P-levels and could

potentially change their activity when NPP7 is deleted (30).

Interestingly, Chen et al. found an increase in S1P-levels in

the small intestine of NPP7 KO mice, and the increase was even

more pronounced in the colon (31). It is thus conceivable that

the altered T-lymphocyte numbers in the intestinal mucosa and

in the draining mesenteric lymph nodes that we observed in

NPP7 KO mice are directly or indirectly related to changes in

S1P-levels (32, 33). In contrast, NPP7 does not seem to have

major systemic effects in terms of cell numbers, given that

splenic immune cell populations were quantitatively unaltered

in NPP7 KO mice as compared with WT mice. Of note, our data

showed a decrease in DC-numbers in both the intestine and the

MLNs, which is an additional possibility as to how T-

lymphocyte numbers may have been affected. Intestinal DCs

are known to have important immune regulatory functions

which potentially could include limiting T-lymphocyte

numbers with opposite effects if DCs are absent due to NPP7

deficiency (34). Additional possible explanations to altered T-

lymphocyte and DC numbers as a result of NPP7 deficiency

include effects on proliferation, apoptosis, and retention

in tissue.

Other candidate mechanisms that may contribute to

explaining our results can be found in a recent report by Zhu

et al. where a comparison of the intestinal transcriptome in WT

and NPP7 KOmice was presented (35). Ninety-seven genes were

differentially expressed, including genes that are linked to

metabolism and absorption as well as immune regulation. Two

factors that showed statistically significant differences in

expression levels, and were highlighted by the authors, were

SPP1 (osteopontin) and H2-AB1 (an MHC-II molecule).

Interestingly, osteopontin, which is important for bone

remodeling, is also a potent proinflammatory mediator that

has been strongly implicated in the recruitment of T-cells to

the intestinal mucosa and shown to have a central role in

intestinal inflammation and regeneration (36–38). Intestinal

H2-AB1 expression may be accounted for by professional

antigen-presenting cells, but also by intestinal epithelial cells,

innate lymphoid cells (ILC) and the recently described Thetis

cells, and has been shown to be affected by dietary modifications

(39–41). The data regarding the effects of epithelial and mucosal

H2-AB1 expression on T-cell numbers and intestinal

inflammation are diverging, and studies have shown

associations with both an increase and decrease (41–43).

Taken together, NPP7 KO mice are more susceptible to

induction of intestinal inflammation and proinflammatory as

well as protective factors (e.g. ceramide, S1P, osteopontin and
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H2-AB1) are differentially expressed in NPP7 KO mice already

before a colitis-inducing challenge. To dissect the exact

sequences of events that link NPP7 activity to intestinal T-cell

numbers and inflammatory activity will require elaborate

experiments including time course studies on immune cell

populations, gene and protein expression, and levels of lipid

messengers and of various enzymes involved in sphingosine

metabolism, after inflammatory challenge.

This study has several limitations. First, mice were only

analyzed at a single time-point. It would have been interesting to

perform the analyses at several time-points to reveal potential

dynamics in the changes, including a possible effect of the time-

point for weaning of the mice, at which the gut goes from being

exposed to vast amounts of SM through milk, to lesser exposure.

Second, the study would have benefited from performing flow

cytometry analyses on immune cell populations from the

intestines and MLNs in parallel, to investigate in greater detail

which subpopulations were primarily affected. Third, it would

have been interesting to analyze the intestinal epithelial

compartment separately from the lamina propria to investigate

whether intraepithelial T-lymphocyte (IEL) populations were

more or less severely affected by NPP7 deficiency compared to

the lamina propria populations, both because of the

microanatomical vicinity to the enzymatic activity of NPP7

and because the IELs comprise unconventional subpopulations

that could be differentially affected compared to conventional T-

lymphocytes. Of note, our data suggested a similarly strong or

even stronger effect on CD4+ T-lymphocytes as compared to

CD8a+ T-lymphocyte which could be interpreted as

conventional T-lymphocytes being primarily affected. Finally,

it would have been interesting to quantify some of the known

downstream metabolites of NPP7 activity in the various

anatomical locations examined, to investigate whether there

was a correlation between the effect and metabolite levels

proposing a possible mechanistic link.

The current study has several strengths. First, the number of

mice analyzed is high compared to similar studies that aim to

investigate an immunologic phenotype of a KO mouse. Second,

we analyzed both heterozygous and homozygous mice, which

showed a dose-response relationship between the genotype and

the magnitude of effect. Third, applying quantitative image

analysis to quantify the number of immune cells generated

data showing absolute quantities. Finally, analysis of both the

small and large intestines together with the locally draining

MLNs (which provide the intestines with newly activated T-

lymphocytes) in combination with the spleen representing the

systemic immunological state being less dependent on the events

in the gut where NPP7 is expressed, together comprised a robust

study design.

In conclusion, this study strongly suggests that NPP7 is

instrumental in regulating the numbers of T-lymphocytes in

both the small and large intestines, and thus potentially

important for keeping the homeostasis of the gut immune
Frontiers in Immunology 10
sy s t em and for downregu la t ing pro inflammatory

immune responses.
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SUPPLEMENTARY FIGURE

Quantitative analyses of NK cells and neutrophils in MLNs and spleens did

not show differences comparing WT and NPP7 deficient mice. MLNs and
spleens were stained by immunohistochemistry. Computerized image

analysis was used to quantify positivity (stained fraction of tissue area)
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reflecting cell numbers. (A) Zap70+CD3e− NK cells in MLNs; (B) MPO+

neutrophils in MLNs; (C) Zap70+CD3e− NK cells in spleens; (D) MPO+

neutrophils in spleens; (E)Micrographs of small intestinal tissue illustrating
pre-analysis image processing workflow for training the software to

classify positive and negative signals, respectively; (E1) Target cell
stained with brown chromogen [DAB chromogen] and nuclei identified

through counter staining with hematoxylin; (E2) Initial manual
classification of signals (dark brown classified as target cell, labeled with

green; light grey classified as negative, labeled with light blue; purple

classified as nuclei, labeled with purple); (E3) Final automated
classification of signals by software (both lighter brown and dark brown

classified as target cell, labeled with green; all grey area classified as
negative, labeled with light blue; all purple areas classified as nuclei,

labeled with purple); (F) Image demonstrating region of interest (ROI),
i.e. the mucosal compartment, in an intestinal section with the muscularis

layer and lumen omitted (ROI in solid grey); (G) Image demonstrating

region of interest (ROI) in MLN section (ROI defined by dotted red line).
Each dot in the column graphs represents an individual mouse and is the

mean of two staining experiments. Columns show the group mean ± SD.
*P<0.05, **P<0.001, ***P<0.001.
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