5 research outputs found

    The Native Copper- and Zinc- Binding Protein Metallothionein Blocks Copper-Mediated Aβ Aggregation and Toxicity in Rat Cortical Neurons

    Get PDF
    Background: A major pathological hallmark of AD is the deposition of insoluble extracellular b-amyloid (Ab) plaques. There are compelling data suggesting that Ab aggregation is catalysed by reaction with the metals zinc and copper. Methodology/Principal Findings: We now report that the major human-expressed metallothionein (MT) subtype, MT-2A, is capable of preventing the in vitro copper-mediated aggregation of Ab1–40 and Ab1–42. This action of MT-2A appears to involve a metal-swap between Zn 7MT-2A and Cu(II)-Ab, since neither Cu 10MT-2A or carboxymethylated MT-2A blocked Cu(II)-Ab aggregation. Furthermore, Zn7MT-2A blocked Cu(II)-Ab induced changes in ionic homeostasis and subsequent neurotoxicity of cultured cortical neurons. Conclusions/Significance: These results indicate that MTs of the type represented by MT-2A are capable of protecting against Ab aggregation and toxicity. Given the recent interest in metal-chelation therapies for AD that remove metal from Ab leaving a metal-free Ab that can readily bind metals again, we believe that MT-2A might represent a different therapeuti

    A Novel Anti-Inflammatory Compound, Artonkin-4'-O-glucoside, from the Leaves of Artocarpus Tonkiensis Supresses Experimentally Induced Arthritis

    No full text
    Artocarpus tonkinenesis (Moraceae) has been used in Vietnamese traditional medicine for the treatment of backache and joint diseases since many 100 years. We have previously shown that a crude extract of A. tonkinensis elicited anti-inflammatory effects in rat collagen-induced arthritis (CIA), with significant improvement of disease symptoms. However, the pharmacological basis of the bioactivity of A. tonkinensis extract is not known. In the present study, we have isolated four individual active components from A. tonkinensis extract by reverse phase high-pressure liquid chromatography. The structures of the compounds were determined by nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry and their biological effects investigated. A novel biologically active flavonoid glucoside (5-hydroxy-8-hydroxymethyl-8-methyl-2-[4-(3,4,5-trihydroxy-6-hydroxymethyl-tetrahydro-pyran-2-yloxy)-phenyl]-8H-pyrano[3,2-g]chromen-4-one) with an average molecular mass of 514.49 Da was isolated. We have named the compound artonkin-4′-O-glucoside. The name ‘artonkin’ for the novel flavonoid part of the compound was coined from the Latin name of its source Artocarpus tonkinensis. The three other active flavonoid glucosides isolated and characterized were alphitonin-4-O-β-d-glucoside, maesopsin-4-O-β-d-glucoside and kaempherol-3-O-β-d-glucoside. All four compounds were found to cause anti-inflammatory effect with different potencies. The anti-inflammatory effects demonstrated in the rat model of arthritis correlate well with the inhibition of mitogen-induced T-cell proliferation. Furthermore, the compounds inhibit production of cytokines, such as tumour necrosis factor-α and interferon-γ, in mitogen-stimulated T cells in a concentration-dependent manner. We postulate that the isolated flavonoids suppress T-cell proliferation as well as cytokine expression and thereby contribute to an amelioration of arthritis severity in CIA

    Delivery of nucleic acids with a stearylated (RxR)4 peptide using a non-covalent co-incubation strategy.

    No full text
    In recent years, oligonucleotide-based molecules have been intensely used to modulate gene expression. All these molecules share the common feature of being essentially impermeable over cellular membranes and they therefore require efficient delivery vectors. Cell-penetrating peptides are a group of delivery peptides that has been readily used for nucleic acid delivery. In particular, polyarginine and derivates thereof, i.e. the (RxR)(4) peptide, have been applied with success both in vitro and in vivo. A major problem, however, with these arginine-rich peptides is that they frequently remain trapped in endosomal compartments following internalization. The activity of polyarginine has previously been improved by conjugation to a stearyl moiety. Therefore, we sought to investigate what impact such modification would have on the pre-clinically used (RxR)(4) peptide for non-covalent delivery of plasmids and splice-correcting oligonucleotides (SCOs) and compare it with stearylated Arg9 and Lipofectamine 2000. We show that stearyl-(RxR)(4) mediates efficient plasmid transfections in several cell lines and the expression levels are significantly higher than when using unmodified (RxR)(4) or stearylated Arg9. Although the transfection efficiency is lower than with Lipofectamine 2000, we show that stearyl-(RxR)(4) is substantially less toxic. Furthermore, using a functional splice-correction assay, we show that stearyl-(RxR)(4) complexed with 2'-OMe SCOs promotes significant splice correction whereas stearyl-Arg9 fails to do so. Moreover, stearyl-(RxR)(4) promotes dose-dependent splice correction in parity with (RxR)(4)-PMO covalent conjugates, but at least 10-times lower concentration. These features make this stearic acid modified analog of (RxR)(4) an intriguing vector for future in vivo experiments

    Cell-Penetrating Peptides: Design, Synthesis, and Applications

    No full text
    corecore