9 research outputs found

    Selective Interlayers and Contacts in Organic Photovoltaic Cells

    No full text
    Organic photovoltaic cells (OPVs) are promising solar electric energy conversion systems with impressive recent optimization of active layers. OPV optimization must now be accompanied by the development of new charge-selective contacts and interlayers. This Perspective considers the role of interface science in energy harvesting using OPVs, looking back at early photoelectrochemical (photogalvanic) energy conversion platforms, which suffered from a lack of charge carrier selectivity. We then examine recent platforms and the fundamental aspects of selective harvesting of holes and electrons at opposite contacts. For blended heterojunction OPVs, contact/interlayer design is especially critical because charge harvesting competes with recombination at these same contacts. New interlayer materials can modify contacts to both control work function and introduce selectivity and chemical compatibility with nonpolar active layers and add thermodynamic and kinetic selectivity to charge harvesting. We briefly discuss the surface and interface science required for the development of new interlayer materials and take a look ahead at the challenges yet to be faced in their optimization

    Energy Level Alignment of Molybdenum Oxide on Colloidal Lead Sulfide (PbS) Thin Films for Optoelectronic Devices

    No full text
    Interfacial charge transport in optoelectronic devices is dependent on energetic alignment that occurs via a number of physical and chemical mechanisms. Herein, we directly connect device performance with measured thickness-dependent energy-level offsets and interfacial chemistry of 1,2-ethanedithiol-treated lead sulfide (PbS) quantum dots and molybdenum oxide. We show that interfacial energetic alignment results from partial charge transfer, quantified via the chemical ratios of Mo<sup>5+</sup> relative to Mo<sup>6+</sup>. The combined effect mitigates leakage current in both the dark and the light, relative to a metal contact, with an overall improvement in open circuit voltage, fill factor, and short circuit current

    Critical Interface States Controlling Rectification of Ultrathin NiO–ZnO p–n Heterojunctions

    No full text
    Herein, we consider the heterojunction formation of two prototypical metal oxides: p-type NiO and n-type ZnO. Elementally abundant, low-cost metal oxide/oxide’ heterojunctions are of interest for UV optical sensing, gas sensing, photocatalysis, charge confinement layers, piezoelectric nanogenerators, and flash memory devices. These heterojunctions can also be used as current rectifiers and potentially as recombination layers in tandem photovoltaic stacks by making the two oxide layers ultrathin. In the ultrathin geometry, understanding and control of interface electronic structure and chemical reactions at the oxide/oxide’ interface are critical to functionality, as oxygen atoms are shared at the interface of the dissimilar materials. In the studies presented here the extent of chemical reactions and interface band bending is monitored using X-ray and ultraviolet photoelectron spectroscopies. Interface reactivity is controlled by varying the near surface composition of nickel oxide, nickel hydroxide, and nickel oxyhydroxide using standard surface-treatment procedures. A direct correlation between relative percentage of interface hydroxyl chemistry (and hence surface Lewis basicity) and the local band edge alignment for ultrathin p–n junctions (6 nm NiO/30 nm ZnO) is observed. We propose an acid–base formulism to explain these results: the stronger the acid–base reaction, the greater the fraction of interfacial electronic states which lower the band offset between the ZnO conduction band and the NiO valence band. Increased interfacial gap states result in larger reverse bias current of the p–n junction and lower rectification ratios. The acid–base formulism could serve as a future design principle for oxide/oxide’ and other heterojunctions based on dissimilar materials

    Quantifying the Extent of Contact Doping at the Interface between High Work Function Electrical Contacts and Poly(3-hexylthiophene) (P3HT)

    No full text
    We demonstrate new approaches to the characterization of oxidized regioregular poly­(3-hexylthiophene-2,5-diyl) (P3HT) that results from electronic equilibration with device-relevant high work function electrical contacts using high-resolution X-ray (XPS) and ultraviolet (UPS) photoelectron spectroscopy (PES). Careful interpretation of photoemission signals from thiophene sulfur atoms in thin (ca. 20 nm or less) P3HT films provides the ability to uniquely elucidate the products of charge transfer between the polymer and the electrical contact, which is a result of Fermi-level equilibration between the two materials. By comparing high-resolution S 2p core-level spectra to electrochemically oxidized P3HT standards, the extent of the contact doping reaction is quantified, where one in every six thiophene units (ca. 20%) in the first monolayer is oxidized. Finally, angle-resolved XPS of both pure P3HT and its blends with phenyl-C<sub>61</sub>-butyric acid methyl ester (PCBM) confirms that oxidized P3HT species exist near contacts with work functions greater than ca. 4 eV, providing a means to characterize the interface and “bulk” region of the organic semiconductor in a single film

    Semi-random vs Well-Defined Alternating Donor–Acceptor Copolymers

    No full text
    The influence of backbone composition on the physical properties of donor–acceptor (D–A) copolymers composed of varying amounts of benzodithiophene (BDT) donor with the thienoisoindoledione (TID) acceptor is investigated. First, the synthesis of bis- and tris-BDT monomers is reported; these monomers are subsequently used in Stille copolymerizations to create well-defined alternating polymer structures with repeating (D–A), (D–D–A), and (D–D–D–A) units. For comparison, five semi-random D–A copolymers with a D:A ratio of 1.5, 2, 3, 4, and 7 were synthesized by reacting trimethyltin-functionalized BDT with various ratios of iodinated BDT and brominated TID. While the HOMO levels of all the resultant polymers are very similar, a systematic red shift in the absorbance spectra onset of the D–A copolymer films from 687 to 883 nm is observed with increasing acceptor content, suggesting the LUMO can be fine-tuned over a range of 0.4 eV. When the solid-state absorbance spectra of well-defined alternating copolymers are compared to those of semi-random copolymers with analogous D:A ratios, the spectra of the alternating copolymers are significantly more red-shifted. Organic photovoltaic device efficiencies show that the semi-random materials all outperform the well-defined alternating copolymers, and an optimal D:A ratio of 2 produces the highest efficiency. Additional considerations concerning fine-tuning the lifetimes of the photoconductance transients of copolymer:fullerene films measured by time-resolved microwave conductivity are discussed. Overall, the results of this work indicate that the semi-random approach is a powerful synthetic strategy for fine-tuning the optoelectronic and photophysical properties of D–A materials for a number of systematic studies, especially given the ease with which the D:A ratios in the semi-random copolymers can be tuned

    Evidence for near-Surface NiOOH Species in Solution-Processed NiO<sub><i>x</i></sub> Selective Interlayer Materials: Impact on Energetics and the Performance of Polymer Bulk Heterojunction Photovoltaics

    No full text
    The characterization and implementation of solution-processed, wide bandgap nickel oxide (NiO<sub><i>x</i></sub>) hole-selective interlayer materials used in bulk-heterojunction (BHJ) organic photovoltaics (OPVs) are discussed. The surface electrical properties and charge selectivity of these thin films are strongly dependent upon the surface chemistry, band edge energies, and midgap state concentrations, as dictated by the ambient conditions and film pretreatments. Surface states were correlated with standards for nickel oxide, hydroxide, and oxyhydroxide components, as determined using monochromatic X-ray photoelectron spectroscopy. Ultraviolet and inverse photoemission spectroscopy measurements show changes in the surface chemistries directly impact the valence band energies. O<sub>2</sub>-plasma treatment of the as-deposited NiO<sub><i>x</i></sub> films was found to introduce the dipolar surface species nickel oxyhydroxide (NiOOH), rather than the p-dopant Ni<sub>2</sub>O<sub>3</sub>, resulting in an increase of the electrical band gap energy for the near-surface region from 3.1 to 3.6 eV via a vacuum level shift. Electron blocking properties of the as-deposited and O<sub>2</sub>-plasma treated NiO<sub><i>x</i></sub> films are compared using both electron-only and BHJ devices. O<sub>2</sub>-plasma-treated NiO<sub><i>x</i></sub> interlayers produce electron-only devices with lower leakage current and increased turn on voltages. The differences in behavior of the different pretreated interlayers appears to arise from differences in local density of states that comprise the valence band of the NiO<sub><i>x</i></sub> interlayers and changes to the band gap energy, which influence their hole-selectivity. The presence of NiOOH states in these NiO<sub><i>x</i></sub> films and the resultant chemical reactions at the oxide/organic interfaces in OPVs is predicted to play a significant role in controlling OPV device efficiency and lifetime

    Influence of Molecular Orientation on Charge-Transfer Processes at Phthalocyanine/Metal Oxide Interfaces and Relationship to Organic Photovoltaic Performance

    No full text
    The effect of the molecular orientation distribution of the first monolayer of donor molecules at the hole-harvesting contact in an organic photovoltaic (OPV) on device efficiency was investigated. Two zinc phthalocyanine (ZnPc) phosphonic acids (PA) deposited on indium tin oxide (ITO) electrodes are compared: ZnPc­(PA)<sub>4</sub> contains PA linkers in all four quadrants, and ZnPcPA contains a PA linker in one quadrant. ZnPcPA monolayers exhibited a broad distribution of molecular orientations whereas ZnPc­(PA)<sub>4</sub> adsorption produced a monolayer with a narrower orientation distribution with the molecular plane more parallel to the ITO surface. We used potential-modulated attenuated total reflectance spectroelectrochemistry (PM-ATR) to characterize the charge-transfer kinetics of these films and show that the highest rate constants correspond to ZnPc subpopulations that are oriented more parallel to the ITO surface plane. For ZnPc­(PA)<sub>4</sub>, rate constants exceeded 10<sup>4</sup> s<sup>–1</sup> and are among the highest ever reported for a surface-confined redox couple, which is attributable to both its orientation and the small ZnPc–electrode separation distance. The performance of OPVs with ITO hole-harvesting contacts modified with ZnPc­(PA)<sub>4</sub> was comparable to that achieved with highly activated bare ITO contacts, whereas for ZnPcPA-modified contacts, the OPV performance was similar to that observed with (hole-blocking) alkyl-PA modifiers. These results demonstrate the synergism between molecular structure, energetics, and dynamics at interfaces in OPVs

    Electron-Transfer Processes in Zinc Phthalocyanine–Phosphonic Acid Monolayers on ITO: Characterization of Orientation and Charge-Transfer Kinetics by Waveguide Spectroelectrochemistry

    No full text
    Using a monolayer of zinc phthalocyanine (ZnPcPA) tethered to indium tin oxide (ITO) as a model for the donor/transparent conducting oxide (TCO) interface in organic photovoltaics (OPVs), we demonstrate the relationship between molecular orientation and charge-transfer rates using spectroscopic, electrochemical, and spectroelectrochemical methods. Both monomeric and aggregated forms of the phthalocyanine (Pc) are observed in ZnPcPA monolayers. Potential-modulated attenuated total reflectance (PM-ATR) measurements show that the monomeric subpopulation undergoes oxidation/reduction with <i>k</i><sub>s,app</sub> = 2 × 10<sup>2</sup> s<sup>–1</sup>, independent of Pc orientation. For the aggregated ZnPcPA, faster orientation-dependent charge-transfer rates are observed. For in-plane-oriented Pc aggregates, <i>k</i><sub>s,app</sub> = 2 × 10<sup>3</sup> s<sup>–1</sup>, whereas for upright Pc aggregates, <i>k</i><sub>s,app</sub> = 7 × 10<sup>2</sup> s<sup>–1</sup>. The rates for the aggregates are comparable to those required for redox-active interlayer films at the hole-collection contact in organic solar cells

    Orientation of Phenylphosphonic Acid Self-Assembled Monolayers on a Transparent Conductive Oxide: A Combined NEXAFS, PM-IRRAS, and DFT Study

    No full text
    Self-assembled monolayers (SAMs) of dipolar phosphonic acids can tailor the interface between organic semiconductors and transparent conductive oxides. When used in optoelectronic devices such as organic light emitting diodes and solar cells, these SAMs can increase current density and photovoltaic performance. The molecular ordering and conformation adopted by the SAMs determine properties such as work function and wettability at these critical interfaces. We combine angle-dependent near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) to determine the molecular orientations of a model phenylphosphonic acid on indium zinc oxide, and correlate the resulting values with density functional theory (DFT). We find that the SAMs are surprisingly well-oriented, with the phenyl ring adopting a well-defined tilt angle of 12–16° from the surface normal. We find quantitative agreement between the two experimental techniques and density functional theory calculations. These results not only provide a detailed picture of the molecular structure of a technologically important class of SAMs, but also resolve a long-standing ambiguity regarding the vibrational-mode assignments for phosphonic acids on oxide surfaces, thus improving the utility of PM-IRRAS for future studies
    corecore