55 research outputs found

    Major histocompatibility complex-dependent susceptibility to Cryptococcus neoformans in mice

    Get PDF
    Journal ArticleTo evaluate the role of major histocompatibility complex (MHC) genes in the resistance to Cryptococcus neoformans, we conducted infection experiments in MHC-congenic strains of mice. Significant MHC-dependent susceptibility differences were found among homozygotes and heterozygotes. This study is the first experimental demonstration of MHC-dependent susceptibility to C. neoformans infections in mice and indicates that MHC genes can be important in host resistance

    Relationship of virulence factor expression to evolved virulence in mouse-passaged Cryptococcus neoformans lines

    Get PDF
    Journal ArticleSerial passage of Cryptococcus neoformans in mice increases virulence relative to the nonpassaged line. Postpassaged lines showed no difference in the expression of most known virulence factors, with the exception that the more virulent lines had smaller capsules in vitro. These data imply that other mechanisms of virulence remain to be discovered

    Infection-dependent phenotypes in MHC-congenic mice are not due to MHC: can we trust congenic animals?

    Get PDF
    Journal ArticleCongenic strains of mice are assumed to differ only at a single gene or region of the genome. These mice have great importance in evaluating the function of genes. However, their utility depends on the maintenance of this true congenic nature. Although, accumulating evidence suggests that congenic strains suffer genetic divergence that could compromise interpretation of experimental results, this problem is usually ignored. During coinfection studies with Salmonella typhimurium and Theiler's murine encephalomyelitis virus (TMEV) in major histocompatibility complex (MHC)-congenic mice, we conducted the proper F2 controls and discovered significant differences between these F2 animals and MHC-genotype-matched P0 and F1 animals in weight gain and pathogen load. To systematically evaluate the apparent non-MHC differences in these mice, we infected all three generations (P0, F1 and F2) for 5 MHC genotypes (b/b, b/q and q/q as well as d/d, d/q, and q/q) with Salmonella and TMEV

    Major histocompatibility complex heterozygote superiority during coinfection

    Get PDF
    Journal ArticleGenes of the major histocompatibility complex (MHC) play a critical role in immune recognition, and many alleles confer susceptibility to infectious and autoimmune diseases. How these deleterious alleles persist in populations is controversial

    Infection-dependent phenotypes in MHC-congenic mice are not due to MHC: can we trust congenic animals?

    Get PDF
    BACKGROUND: Congenic strains of mice are assumed to differ only at a single gene or region of the genome. These mice have great importance in evaluating the function of genes. However, their utility depends on the maintenance of this true congenic nature. Although, accumulating evidence suggests that congenic strains suffer genetic divergence that could compromise interpretation of experimental results, this problem is usually ignored. During coinfection studies with Salmonella typhimurium and Theiler's murine encephalomyelitis virus (TMEV) in major histocompatibility complex (MHC)-congenic mice, we conducted the proper F(2 )controls and discovered significant differences between these F(2 )animals and MHC-genotype-matched P(0 )and F(1 )animals in weight gain and pathogen load. To systematically evaluate the apparent non-MHC differences in these mice, we infected all three generations (P(0), F(1 )and F(2)) for 5 MHC genotypes (b/b, b/q and q/q as well as d/d, d/q, and q/q) with Salmonella and TMEV. RESULTS: Infected P(0 )MHC q/q congenic homozygotes lost significantly more weight (p = 0.02) and had significantly higher Salmonella (p < 0.01) and TMEV (p = 0.02) titers than the infected F(2 )q/q homozygotes. Neither weight nor pathogen load differences were present in sham-infected controls. CONCLUSIONS: These data suggest that these strains differ for genes other than those in the MHC congenic region. The most likely explanation is that deleterious recessive mutations affecting response to infection have accumulated in the more than 40 years that this B10.Q-H-2(q )MHC-congenic strain has been separated from its B10-H-2(b )parental strain. During typical experiments with congenic strains, the phenotypes of these accumulated mutations will be falsely ascribed to the congenic gene(s). This problem likely affects any strains separated for appreciable time and while usually ignored, can be avoided with the use of F(2 )segregants

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M&gt;70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0&lt;e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Estimating the Relative Contributions of Virulence Factors for Pathogenic Microbes

    No full text
    Many pathogenic microbes have multiple virulence factors that can cause damage to the host and thus contribute to an overall virulence phenotype for that organism. Although current techniques are suitable for demonstrating that a particular microbial characteristic contributes to virulence, no formal approach for defining the relative contributions of multiple virulence factors to overall virulence has been proposed. This paper describes the use of multivariate linear regression to estimate the relative contributions of virulence factors to the overall phenomenon of virulence. The approach is illustrated here with sample calculations of the relative contributions of individual Cryptococcus neoformans and Bacillus anthracis virulence factors to the overall virulence phenotype. These calculations were derived from a small underpowered experimental data set for the fungus and two larger sets of randomly generated data for both microbes. The major limitation of this method is a requirement for large data sets of microbial strains that differ in virulence and virulence factor expression. Multivariate linear regression can be used to identify the relative levels of importance of virulence factors in virulence studies, and this information can be used to prioritize antigen identification for vaccine development and the design of antimicrobial strategies that target virulence mechanisms
    corecore