13,906 research outputs found

    Semantic modelling of learning objects and instruction

    Get PDF
    We introduce an ontology-based semantic modelling framework that addresses subject domain modelling, instruction modelling, and interoperability aspects in the development of complex reusable learning objects. Ontologies are knowledge representation frameworks, ideally suited to support knowledge-based modelling of these learning objects. We illustrate the benefits of semantic modelling for learning object assemblies within the context of standards such as SCORM Sequencing and Navigation and Learning Object Metadata

    Permanent-magnet atom chips for the study of long, thin atom clouds

    Get PDF
    Atom-chip technology can be used to confine atoms tightly using permanently magnetised videotape along with external magnetic fields. The one-dimensional (1D) gas regime can be realised and studied by trapping the atoms in high-aspect-ratio traps in which the radial motion of the system is confined to zero-point oscillation

    Microwave sidebands for atomic physics experiments by period one oscillation in optically injected diode lasers

    Full text link
    We show that nonlinear dynamics in diode lasers with optical injection leads to frequency tunable microwave sidebands which are suitable for atomic physics experiments. We demonstrate the applicability of the sidebands in an experiment where rubidium atoms are magneto-optically trapped with both the trap and the re-pump optical frequencies derived from one optically injected laser. We find linewidth narrowing in the optical spectrum of the injected laser at both the injection frequency and the sideband frequency. With strong optical injection which leads to frequency locking we find a complete linewidth transfer from the master to the slave. Further applications are discussed.Comment: 6 pages, 4 figure

    Asymmetric magnetic reconnection with a flow shear and applications to the magnetopause

    Get PDF
    We perform a theoretical and numerical study of anti-parallel 2D magnetic reconnection with asymmetries in the density and reconnecting magnetic field strength in addition to a bulk flow shear across the reconnection site in the plane of the reconnecting fields, which commonly occurs at planetary magnetospheres. We predict the speed at which an isolated X-line is convected by the flow, the reconnection rate, and the critical flow speed at which reconnection no longer takes place for arbitrary reconnecting magnetic field strengths, densities, and upstream flow speeds, and confirm the results with two-fluid numerical simulations. The predictions and simulation results counter the prevailing model of reconnection at Earth's dayside magnetopause which says reconnection occurs with a stationary X-line for sub-Alfvenic magnetosheath flow, reconnection occurs but the X-line convects for magnetosheath flows between the Alfven speed and double the Alfven speed, and reconnection does not occur for magnetosheath flows greater than double the Alfven speed. We find that X-line motion is governed by momentum conservation from the upstream flows, which are weighted differently in asymmetric systems, so the X-line convects for generic conditions including sub-Alfvenic upstream speeds. For the reconnection rate, while the cutoff condition for symmetric reconnection is that the difference in flows on the two sides of the reconnection site is twice the Alfven speed, we find asymmetries cause the cutoff speed for asymmetric reconnection to be higher than twice the asymmetric form of the Alfven speed. The results compare favorably with an observation of reconnection at Earth's polar cusps during a period of northward interplanetary magnetic field, where reconnection occurs despite the magnetosheath flow speed being more than twice the magnetosheath Alfven speed, the previously proposed suppression condition.Comment: 46 pages, 7 figures, abstract abridged here, accepted to Journal of Geophysical Research - Space Physic

    Darwinian Selection and Non-existence of Nash Equilibria

    Full text link
    We study selection acting on phenotype in a collection of agents playing local games lacking Nash equilibria. After each cycle one of the agents losing most games is replaced by a new agent with new random strategy and game partner. The network generated can be considered critical in the sense that the lifetimes of the agents is power law distributed. The longest surviving agents are those with the lowest absolute score per time step. The emergent ecology is characterized by a broad range of behaviors. Nevertheless, the agents tend to be similar to their opponents in terms of performance.Comment: 4 pages, 5 figure

    Vortices in fermion droplets with repulsive dipole-dipole interactions

    Full text link
    Vortices are found in a fermion system with repulsive dipole-dipole interactions, trapped by a rotating quasi-two-dimensional harmonic oscillator potential. Such systems have much in common with electrons in quantum dots, where rotation is induced via an external magnetic field. In contrast to the Coulomb interactions between electrons, the (externally tunable) anisotropy of the dipole-dipole interaction breaks the rotational symmetry of the Hamiltonian. This may cause the otherwise rotationally symmetric exact wavefunction to reveal its internal structure more directly.Comment: 5 pages, 5 figure

    A three-dimensional electrostatic actuator with a locking mechanism for a new generation of atom chips

    No full text
    A micromachined three-dimensional electrostatic actuator that is optimized for aligning and tuning optical microcavities on atom chips is presented. The design of the 3D actuator is outlined in detail, and its characteristics are verified by analytical calculations and finite element modelling. Furthermore, the fabrication process of the actuation device is described and preliminary fabrication results are shown. The actuation in the chip plane which is used for mirror positioning has a working envelope of 17.5 ?m. The design incorporates a unique locking mechanism which allows the out-of-plane actuation that is used for cavity tuning to be carried out once the in-plane actuation is completed. A maximum translation of 7 ?m can be achieved in the out-of-plane direction

    Experimental f-value and isotopic structure for the Ni I line blended with [OI] at 6300A

    Full text link
    We have measured the oscillator strength of the Ni I line at 6300.34 \AA, which is known to be blended with the forbidden [O I] λ\lambda6300 line, used for determination of the oxygen abundance in cool stars. We give also wavelengths of the two isotopic line components of 58^{58}Ni and 60^{60}Ni derived from the asymmetric laboratory line profile. These two line components of Ni I have to be considered when calculating a line profile of the 6300 \AA\ feature observed in stellar and solar spectra. We also discuss the labelling of the energy levels involved in the Ni I line, as level mixing makes the theoretical predictions uncertain.Comment: Accepted for publication in ApJLetter
    corecore