1,058 research outputs found

    Survival in severe alpha-1-antitrypsin deficiency (PiZZ)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies of the natural history of alpha-1-antitrypsin (AAT) deficiency are mostly based on highly selected patients. The aim of this study was to analyse the mortality of PiZZ individuals.</p> <p>Methods</p> <p>Data from 1339 adult PiZZ individuals from the Swedish National AAT Deficiency Registry, followed from 1991 to 2008, were analysed. Forty-three percent of these individuals were identified by respiratory symptoms (respiratory cases), 32% by liver diseases and other diseases (non-respiratory cases) and 25% by screening (screened cases). Smoking status was divided into two groups: smokers 737 (55%) and 602 (45%) never-smokers.</p> <p>Results</p> <p>During the follow-up 315 individuals (24%) died. The standardised mortality rate (SMR) for respiratory cases was 4.70 (95% Confidence Interval (CI) 4.10-5.40), 3.0 (95%CI 2.35-3.70) for the non-respiratory cases and 2.30 (95% CI 1.46-3.46) for the screened cases. The smokers had a higher mortality risk than never-smokers, with a SMR of 4.80 (95%CI 4.20-5.50) for the smokers and 2.80(95%CI 2.30-3.40) for the never-smokers. The Rate Ratio (RR) was 1.70 (95% CI 1.35-2.20). Also among the screened cases, the mortality risk for the smokers was significantly higher than in the general Swedish population (SMR 3.40 (95% CI 1.98-5.40).</p> <p>Conclusion</p> <p>Smokers with severe AAT deficiency, irrespective of mode of identification, have a significantly higher mortality risk than the general Swedish population.</p

    A pilot study comparing the metabolic profiles of elite-level athletes from different sporting disciplines

    Get PDF
    Background: The outstanding performance of an elite athlete might be associated with changes in their blood metabolic profile. The aims of this study were to compare the blood metabolic profiles between moderate- and high-power and endurance elite athletes and to identify the potential metabolic pathways underlying these differences. Methods: Metabolic profiling of serum samples from 191 elite athletes from different sports disciplines (121 high- and 70 moderate-endurance athletes, including 44 high- and 144 moderate-power athletes), who participated in national or international sports events and tested negative for doping abuse at anti-doping laboratories, was performed using non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography. Multivariate analysis was conducted using orthogonal partial least squares discriminant analysis. Differences in metabolic levels between high- and moderate-power and endurance sports were assessed by univariate linear models. Results: Out of 743 analyzed metabolites, gamma-glutamyl amino acids were significantly reduced in both high-power and high-endurance athletes compared to moderate counterparts, indicating active glutathione cycle. High-endurance athletes exhibited significant increases in the levels of several sex hormone steroids involved in testosterone and progesterone synthesis, but decreases in diacylglycerols and ecosanoids. High-power athletes had increased levels of phospholipids and xanthine metabolites compared to moderate-power counterparts. Conclusions: This pilot data provides evidence that high-power and high-endurance athletes exhibit a distinct metabolic profile that reflects steroid biosynthesis, fatty acid metabolism, oxidative stress, and energy-related metabolites. Replication studies are warranted to confirm differences in the metabolic profiles associated with athletes’ elite performance in independent data sets, aiming ultimately for deeper understanding of the underlying biochemical processes that could be utilized as biomarkers with potential therapeutic implications

    Characterisation of Human Embryonic Stem Cells Conditioning Media by 1H-Nuclear Magnetic Resonance Spectroscopy

    Get PDF
    BACKGROUND: Cell culture media conditioned by human foreskin fibroblasts (HFFs) provide a complex supplement of protein and metabolic factors that support in vitro proliferation of human embryonic stem cells (hESCs). However, the conditioning process is variable with different media batches often exhibiting differing capacities to maintain hESCs in culture. While recent studies have examined the protein complement of conditioned culture media, detailed information regarding the metabolic component of this media is lacking. METHODOLOGY/PRINCIPAL FINDINGS: Using a (1)H-Nuclear Magnetic Resonance ((1)H-NMR) metabonomics approach, 32 metabolites and small compounds were identified and quantified in media conditioned by passage 11 HFFs (CMp11). A number of metabolites were secreted by HFFs with significantly higher concentration of lactate, alanine, and formate detected in CMp11 compared to non-conditioned media. In contrast, levels of tryptophan, folate and niacinamide were depleted in CMp11 indicating the utilisation of these metabolites by HFFs. Multivariate statistical analysis of the (1)H-NMR data revealed marked age-related differences in the metabolic profile of CMp11 collected from HFFs every 24 h over 72 h. Additionally, the metabolic profile of CMp11 was altered following freezing at -20°C for 2 weeks. CM derived from passage 18 HFFs (CMp18) was found to be ineffective at supporting hESCs in an undifferentiated state beyond 5 days culture. Multivariate statistical comparison of CMp11 and CMp18 metabolic profiles enabled rapid and clear discrimination between the two media with CMp18 containing lower concentrations of lactate and alanine as well as higher concentrations of glucose and glutamine. CONCLUSIONS/SIGNIFICANCE: (1)H-NMR-based metabonomics offers a rapid and accurate method of characterising hESC conditioning media and is a valuable tool for monitoring, controlling and optimising hESC culture media preparation

    Molecular targets for the protodynamic action of cis-urocanic acid in human bladder carcinoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>cis-urocanic acid (cis-UCA) is an endogenous amino acid metabolite capable of transporting protons from the mildly acidic extracellular medium into the cell cytosol. The resulting intracellular acidification suppresses many cellular activities. The current study was aimed at characterizing the molecular mechanisms underlying cis-UCA-mediated cytotoxicity in cultured cancer cells.</p> <p>Methods</p> <p>5367 bladder carcinoma cells were left untreated or treated with cis-UCA. Cell death was assessed by measuring caspase-3 activity, mitochondrial membrane polarization, formation and release of cytoplasmic histone-associated DNA fragments, and cellular permeabilization. Cell viability and metabolic activity were monitored by colorimetric assays. Nuclear labelling was used to quantify the effects of cis-UCA on cell cycle. The activity of the ERK and JNK signalling pathways was studied by immunoblotting with specific antibodies. Phosphatase activity in cis-UCA-treated cells was determined by assay kits measuring absorbance resulting from the dephosphorylation of an artificial substrate. All statistical analyses were performed using the two-way Student's t-test (p < 0.05).</p> <p>Results</p> <p>Here we report that treatment of the 5637 human bladder carcinoma cells with 2% cis-UCA induces both apoptotic and necrotic cell death. In addition, metabolic activity of the 5637 cells is rapidly impaired, and the cells arrest in cell cycle in response to cis-UCA. Importantly, we show that cis-UCA promotes the ERK and JNK signalling pathways by efficiently inhibiting the activity of serine/threonine and tyrosine phosphatases.</p> <p>Conclusions</p> <p>Our studies elucidate how cis-UCA modulates several cellular processes, thereby inhibiting the proliferation and survival of bladder carcinoma cells. These anti-cancer effects make cis-UCA a potential candidate for the treatment of non-muscle invasive bladder carcinoma.</p

    Prevalence of genetic polymorphisms in the promoter region of the alpha-1 antitrypsin (SERPINA1) gene in chronic liver disease: a case control study

    Get PDF
    Contains fulltext : 89639.pdf (publisher's version ) (Open Access)BACKGROUND: Alpha-1 antitrypsin (A1AT) deficiency, caused by the Z allele (p.E342K) and S allele (p.E264V) in the SERPINA1 gene, can induce liver and pulmonary disease. Different mechanisms appear to be responsible for the pathogenesis of these divergent disease expressions. The c.-1973T >C polymorphism located in the SERPINA1 promoter region is found more frequent in A1AT deficiency patients with liver disease compared to patients with pulmonary disease, but data are lacking regarding contribution to the development of liver diseases caused by other aetiologies. AIM: To study the prevalence of c.-1973T >C, Z allele and S allele in a cohort of patients with liver disease of various aetiologies compared with healthy controls and to evaluate its effect on disease progression. METHODS: A total of 297 patients with liver disease from various aetiologies and 297 age and gender matched healthy controls were included. The c.-1973T >C polymorphism and Z and S alleles of the SERPINA1 gene were analyzed by real-time PCR. RESULTS: c.-1973T >C was similarly distributed between patients with liver disease of various origins and healthy controls. Furthermore, the distribution of c.-1973T >C was independent from aetiology subgroup. In patients with liver disease mean ages at of onset of liver disease were 44.4, 42.3 and 40.7 years for the c.-1973 T/T, T/C and C/C genotype respectively (NS). S allele heterozygosity was increased in patients with drug induced liver injury (DILI), (OR 4.3; 95%CI 1.1-17.2). CONCLUSION: In our study, c.-1973T >C polymorphism was not a risk factor for liver disease of various aetiologies. In addition, S allele heterozygosity might contribute to the development of DILI

    α-Fetoprotein and human chorionic gonadotrophin-β as prognostic markers in neuroendocrine tumour patients

    Get PDF
    Serum chromogranin A is the most useful general and prognostic tumour marker available for neuroendocrine tumour (NET) patients. The role of other tumour markers is less clear. In order to determine the diagnostic and prognostic value of serum α-fetoprotein (AFP) and human chorionic gonadotrophin-β (hCGβ) in NETs, a database containing biochemical, histological, and survival data on 360 NET patients was constructed. This data was statistically assessed, using Statistical Package for the Social Sciences, to determine the utility of commonly measured tumour markers with particular emphasis on AFP and hCGβ. α-Fetoprotein and hCGβ were raised in 9.5 and 12.3% of patients respectively and jointly raised in 9.1% of patients in whom it was measured. α-Fetoprotein levels associated strongly and positively with tumour grade, serum CgA and hCGβ levels, and worse survival. Human chorionic gonadotrophin-β levels also associated strongly and positively with serum CgA and AFP levels, and worsening survival. α-Fetoprotein and hCGβ are elevated in high-grade NETs, with a rapidly progressive course and poorer survival. They also correlate with chromogranin-A, which is known to be a marker of tumour burden and to have prognostic value. Thus AFP and hCGβ are clinically important in NETs and when elevated are poor prognostic markers
    • …
    corecore