9,879 research outputs found

    Nongaussian fluctuations arising from finite populations: Exact results for the evolutionary Moran process

    Full text link
    The appropriate description of fluctuations within the framework of evolutionary game theory is a fundamental unsolved problem in the case of finite populations. The Moran process recently introduced into this context [Nowak et al., Nature (London) 428, 646 (2004)] defines a promising standard model of evolutionary game theory in finite populations for which analytical results are accessible. In this paper, we derive the stationary distribution of the Moran process population dynamics for arbitrary 2×22\times{}2 games for the finite size case. We show that a nonvanishing background fitness can be transformed to the vanishing case by rescaling the payoff matrix. In contrast to the common approach to mimic finite-size fluctuations by Gaussian distributed noise, the finite size fluctuations can deviate significantly from a Gaussian distribution.Comment: 4 pages (2 figs). Published in Physical Review E (Rapid Communications

    Three-Omega Thermal-Conductivity Measurements with Curved Heater Geometries

    Full text link
    The three-omega method, a powerful technique to measure the thermal conductivity of nanometer-thick films and the interfaces between them, has historically employed straight conductive wires to act as both heaters and thermometers. When investigating stochastically prepared samples such as two-dimensional materials and nanomembranes, residue and excess material can make it difficult to fit the required millimeter-long straight wire on the sample surface. There are currently no available criteria for how diverting three-omega heater wires around obstacles affects the validity of the thermal measurement. In this Letter, we quantify the effect of wire curvature by performing three-omega experiments with a wide range of frequencies using both curved and straight heater geometries on SiO2_2/Si samples. When the heating wire is curved, we find that the measured Si substrate thermal conductivity changes by only 0.2%. Similarly, we find that wire curvature has no significant effect on the determination of the thermal resistance of a ∼\sim65 nm SiO2_2 layer, even for the sharpest corners considered here, for which the largest measured ratio of the thermal penetration depth of the applied thermal wave to radius of curvature of the heating wire is 4.3. This result provides useful design criteria for three-omega experiments by setting a lower bound for the maximum ratio of thermal penetration depth to wire radius of curvature.Comment: 4 pages, 3 figure

    Magnon softening in a ferromagnetic monolayer: a first-principles spin dynamics study

    Full text link
    We study the Fe/W(110) monolayer system through a combination of first principles calculations and atomistic spin dynamics simulations. We focus on the dispersion of the spin waves parallel to the [001] direction. Our results compare favorably with the experimental data of Prokop et al. [Phys. Rev. Lett. 102, 177206], and correctly capture a drastic softening of the magnon spectrum, with respect to bulk bcc Fe. The suggested shortcoming of the itinerant electron model, in particular that given by density functional theory, is refuted. We also demonstrate that finite temperature effects are significant, and that atomistic spin dynamics simulations represent a powerful tool with which to include these.Comment: v1: 11 pages, 3 figures. v2: double column, 5 pages, 3 figures, typos corrected, references adde

    Spin Readout and Initialization in a Semiconductor Quantum Dot

    Full text link
    Electron spin qubits in semiconductors are attractive from the viewpoint of long coherence times. However, single spin measurement is challenging. Several promising schemes incorporate ancillary tunnel couplings that may provide unwanted channels for decoherence. Here, we propose a novel spin-charge transduction scheme, converting spin information to orbital information within a single quantum dot by microwave excitation. The same quantum dot can be used for rapid initialization, gating, and readout. We present detailed modeling of such a device in silicon to confirm its feasibility.Comment: Published versio

    Backflow in a Fermi Liquid

    Full text link
    We calculate the backflow current around a fixed impurity in a Fermi liquid. The leading contribution at long distances is radial and proportional to 1/r^2. It is caused by the current induced density modulation first discussed by Landauer. The familiar 1/r^3 dipolar backflow obtained in linear response by Pines and Nozieres is only the next to leading term, whose strength is calculated here to all orders in the scattering. In the charged case the condition of perfect screening gives rise to a novel sum rule for the phase shifts. Similar to the behavior in a classical viscous liquid, the friction force is due only to the leading contribution in the backflow while the dipolar term does not contribute.Comment: 4 pages, 1 postscript figure, uses ReVTeX and epsfig macro, submitted to Physical Review Letter

    Pressure Induced Charge Disproportionation in LaMnO3_{3}

    Full text link
    We present a total energy study as a function of volume in the cubic phase of LaMnO3_{3}. A charge disproportionated state into planes of Mn3+^{3+}O2_{2}/Mn4+^{4+}O2_{2} was found. It is argued that the pressure driven localisation/delocalisation transition might go smoothly through a region of Mn3+^{3+} and Mn4+^{4+} coexistence.Comment: 3 pages, 1 figure, Conference Proceedings: Nanospintronics: Design and Realization (Kyoto, Japan 24-28 May, 2004

    Atomic and Molecular Opacities for Brown Dwarf and Giant Planet Atmospheres

    Get PDF
    We present a comprehensive description of the theory and practice of opacity calculations from the infrared to the ultraviolet needed to generate models of the atmospheres of brown dwarfs and extrasolar giant planets. Methods for using existing line lists and spectroscopic databases in disparate formats are presented and plots of the resulting absorptive opacities versus wavelength for the most important molecules and atoms at representative temperature/pressure points are provided. Electronic, ro-vibrational, bound-free, bound-bound, free-free, and collision-induced transitions and monochromatic opacities are derived, discussed, and analyzed. The species addressed include the alkali metals, iron, heavy metal oxides, metal hydrides, H2H_2, H2OH_2O, CH4CH_4, COCO, NH3NH_3, H2SH_2S, PH3PH_3, and representative grains. [Abridged]Comment: 28 pages of text, plus 22 figures, accepted to the Astrophysical Journal Supplement Series, replaced with more compact emulateapj versio

    Reflections on Designing Field Research for Emerging IS Topics: The Case of Knowledge Management

    Get PDF
    To understand how to improve the research process for future projects, it is useful to take a retrospective view of a research project. This is especially true for emerging topics in IS where many opportunities are available to shape directions and priorities. This article presents a reflective analysis of a field research project in the area of knowledge management. The article examines the process history and assesses the decisions taken and activities carried out in the early formative stages of a field research project. With a detailed anthropological flavor, the paper describes the ins and outs of the various phases of the research process in a narrative experiential way, and analyzes what was learned. The results should be useful for future researchers. The major lessons learned were: 1. Retrospectively examining the research of others can be useful in learning how to improve one\u27s ability to do research in a particular area, such as field research in information systems. 2. Researchers wishing to develop a long term relationship with a host organization may have to be flexible in their research approaches and methods, even to the extent of sacrificing rigor for providing outcomes of use to the host organization. 3. Pilot studies should be carefully designed and executed to maximize learning for later, more extensive studies
    • …
    corecore