10,003 research outputs found

    Nongaussian fluctuations arising from finite populations: Exact results for the evolutionary Moran process

    Full text link
    The appropriate description of fluctuations within the framework of evolutionary game theory is a fundamental unsolved problem in the case of finite populations. The Moran process recently introduced into this context [Nowak et al., Nature (London) 428, 646 (2004)] defines a promising standard model of evolutionary game theory in finite populations for which analytical results are accessible. In this paper, we derive the stationary distribution of the Moran process population dynamics for arbitrary 2×22\times{}2 games for the finite size case. We show that a nonvanishing background fitness can be transformed to the vanishing case by rescaling the payoff matrix. In contrast to the common approach to mimic finite-size fluctuations by Gaussian distributed noise, the finite size fluctuations can deviate significantly from a Gaussian distribution.Comment: 4 pages (2 figs). Published in Physical Review E (Rapid Communications

    Three-Omega Thermal-Conductivity Measurements with Curved Heater Geometries

    Full text link
    The three-omega method, a powerful technique to measure the thermal conductivity of nanometer-thick films and the interfaces between them, has historically employed straight conductive wires to act as both heaters and thermometers. When investigating stochastically prepared samples such as two-dimensional materials and nanomembranes, residue and excess material can make it difficult to fit the required millimeter-long straight wire on the sample surface. There are currently no available criteria for how diverting three-omega heater wires around obstacles affects the validity of the thermal measurement. In this Letter, we quantify the effect of wire curvature by performing three-omega experiments with a wide range of frequencies using both curved and straight heater geometries on SiO2_2/Si samples. When the heating wire is curved, we find that the measured Si substrate thermal conductivity changes by only 0.2%. Similarly, we find that wire curvature has no significant effect on the determination of the thermal resistance of a ∼\sim65 nm SiO2_2 layer, even for the sharpest corners considered here, for which the largest measured ratio of the thermal penetration depth of the applied thermal wave to radius of curvature of the heating wire is 4.3. This result provides useful design criteria for three-omega experiments by setting a lower bound for the maximum ratio of thermal penetration depth to wire radius of curvature.Comment: 4 pages, 3 figure

    Darwinian Selection and Non-existence of Nash Equilibria

    Full text link
    We study selection acting on phenotype in a collection of agents playing local games lacking Nash equilibria. After each cycle one of the agents losing most games is replaced by a new agent with new random strategy and game partner. The network generated can be considered critical in the sense that the lifetimes of the agents is power law distributed. The longest surviving agents are those with the lowest absolute score per time step. The emergent ecology is characterized by a broad range of behaviors. Nevertheless, the agents tend to be similar to their opponents in terms of performance.Comment: 4 pages, 5 figure

    Spin Readout and Initialization in a Semiconductor Quantum Dot

    Full text link
    Electron spin qubits in semiconductors are attractive from the viewpoint of long coherence times. However, single spin measurement is challenging. Several promising schemes incorporate ancillary tunnel couplings that may provide unwanted channels for decoherence. Here, we propose a novel spin-charge transduction scheme, converting spin information to orbital information within a single quantum dot by microwave excitation. The same quantum dot can be used for rapid initialization, gating, and readout. We present detailed modeling of such a device in silicon to confirm its feasibility.Comment: Published versio

    Temperature driven α\alpha to β\beta phase-transformation in Ti, Zr and Hf from first principles theory combined with lattice dynamics

    Full text link
    Lattice dynamical methods used to predict phase transformations in crystals typically deal with harmonic phonon spectra and are therefore not applicable in important situations where one of the competing crystal structures is unstable in the harmonic approximation, such as the bcc structure involved in the hcp to bcc martensitic phase transformation in Ti, Zr and Hf. Here we present an expression for the free energy that does not suffer from such shortcomings, and we show by self consistent {\it ab initio} lattice dynamical calculations (SCAILD), that the critical temperature for the hcp to bcc phase transformation in Ti, Zr and Hf, can be effectively calculated from the free energy difference between the two phases. This opens up the possibility to study quantitatively, from first principles theory, temperature induced phase transitions.Comment: 4 pages, 3 figure

    Backflow in a Fermi Liquid

    Full text link
    We calculate the backflow current around a fixed impurity in a Fermi liquid. The leading contribution at long distances is radial and proportional to 1/r^2. It is caused by the current induced density modulation first discussed by Landauer. The familiar 1/r^3 dipolar backflow obtained in linear response by Pines and Nozieres is only the next to leading term, whose strength is calculated here to all orders in the scattering. In the charged case the condition of perfect screening gives rise to a novel sum rule for the phase shifts. Similar to the behavior in a classical viscous liquid, the friction force is due only to the leading contribution in the backflow while the dipolar term does not contribute.Comment: 4 pages, 1 postscript figure, uses ReVTeX and epsfig macro, submitted to Physical Review Letter

    Pressure Induced Charge Disproportionation in LaMnO3_{3}

    Full text link
    We present a total energy study as a function of volume in the cubic phase of LaMnO3_{3}. A charge disproportionated state into planes of Mn3+^{3+}O2_{2}/Mn4+^{4+}O2_{2} was found. It is argued that the pressure driven localisation/delocalisation transition might go smoothly through a region of Mn3+^{3+} and Mn4+^{4+} coexistence.Comment: 3 pages, 1 figure, Conference Proceedings: Nanospintronics: Design and Realization (Kyoto, Japan 24-28 May, 2004

    MLS and CALIOP Cloud Ice Measurements in the Upper Troposphere: A Constraint from Microwave on Cloud Microphysics

    Get PDF
    This study examines the consistency and microphysics assumptions among satellite ice water content (IWC) retrievals in the upper troposphere with collocated A-Train radiances from Microwave Limb Sounder (MLS) and lidar backscatters from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). For the cases in which IWC values are small (<10 mg m(-3)), the cloud ice retrievals are constrained by both MLS 240- and 640-GHz radiances and CALIOP 532-nm backscatter (532). From the observed relationships between MLS cloud-induced radiance T-cir and the CALIOP backscatter integrated (532) along the MLS line of sight, an empirical linear relation between cloud ice and the lidar backscatter is found: IWC/(532) = 0.58 +/- 0.11. This lidar cloud ice relation is required to satisfy the cloud ice emission signals simultaneously observed at microwave frequencies, in which ice permittivity is relatively well known. This empirical relationship also produces IWC values that agree well with the CALIOP, version 3.0, retrieval at values <10 mg m(-3). Because the microphysics assumption is critical in satellite cloud ice retrievals, the agreement found in the IWC-(532) relationships increase fidelity of the assumptions used by the lidar and microwave techniques for upper-tropospheric clouds
    • …
    corecore