8 research outputs found

    Regional differences in lumbar spinal posture and the influence of low back pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spinal posture is commonly a focus in the assessment and clinical management of low back pain (LBP) patients. However, the link between spinal posture and LBP is not fully understood. Recent evidence suggests that considering regional, rather than total lumbar spine posture is important. The purpose of this study was to determine; if there are regional differences in habitual lumbar spine posture and movement, and if these findings are influenced by LBP.</p> <p>Methods</p> <p>One hundred and seventy female undergraduate nursing students, with and without LBP, participated in this cross-sectional study. Lower lumbar (LLx), Upper lumbar (ULx) and total lumbar (TLx) spine angles were measured using an electromagnetic tracking system in static postures and across a range of functional tasks.</p> <p>Results</p> <p>Regional differences in lumbar posture and movement were found. Mean LLx posture did not correlate with ULx posture in sitting (r = 0.036, p = 0.638), but showed a moderate inverse correlation with ULx posture in usual standing (r = -0.505, p < 0.001). Regional differences in range of motion from reference postures in sitting and standing were evident. BMI accounted for regional differences found in all sitting and some standing measures. LBP was not associated with differences in regional lumbar spine angles or range of motion, with the exception of maximal backward bending range of motion (F = 5.18, p = 0.007).</p> <p>Conclusion</p> <p>This study supports the concept of regional differences within the lumbar spine during common postures and movements. Global lumbar spine kinematics do not reflect regional lumbar spine kinematics, which has implications for interpretation of measures of spinal posture, motion and loading. BMI influenced regional lumbar posture and movement, possibly representing adaptation due to load.</p

    Biomarkers of Dietary Omega-6 Fatty Acids and Incident Cardiovascular Disease and Mortality: An Individual-Level Pooled Analysis of 30 Cohort Studies

    Get PDF
    BACKGROUND: Global dietary recommendations for and cardiovascular effects of linoleic acid, the major dietary omega-6 fatty acid, and its major metabolite, arachidonic acid, remain controversial. To address this uncertainty and inform international recommendations, we evaluated how in vivo circulating and tissue levels of linoleic acid (LA) and arachidonic acid (AA) relate to incident cardiovascular disease (CVD) across multiple international studies. METHODS: We performed harmonized, de novo, individual-level analyses in a global consortium of 30 prospective observational studies from 13 countries. Multivariable-adjusted associations of circulating and adipose tissue LA and AA biomarkers with incident total CVD and subtypes (coronary heart disease, ischemic stroke, cardiovascular mortality) were investigated according to a prespecified analytic plan. Levels of LA and AA, measured as the percentage of total fatty acids, were evaluated linearly according to their interquintile range (ie, the range between the midpoint of the first and fifth quintiles), and categorically by quintiles. Study-specific results were pooled using inverse-variance–weighted meta-analysis. Heterogeneity was explored by age, sex, race, diabetes mellitus, statin use, aspirin use, omega-3 levels, and fatty acid desaturase 1 genotype (when available). RESULTS: In 30 prospective studies with medians of follow-up ranging 2.5 to 31.9 years, 15 198 incident cardiovascular events occurred among 68 659 participants. Higher levels of LA were significantly associated with lower risks of total CVD, cardiovascular mortality, and ischemic stroke, with hazard ratios per interquintile range of 0.93 (95% CI, 0.88–0.99), 0.78 (0.70–0.85), and 0.88 (0.79–0.98), respectively, and nonsignificantly with lower coronary heart disease risk (0.94; 0.88–1.00). Relationships were similar for LA evaluated across quintiles. AA levels were not associated with higher risk of cardiovascular outcomes; in a comparison of extreme quintiles, higher levels were associated with lower risk of total CVD (0.92; 0.86–0.99). No consistent heterogeneity by population subgroups was identified in the observed relationships. CONCLUSIONS: In pooled global analyses, higher in vivo circulating and tissue levels of LA and possibly AA were associated with lower risk of major cardiovascular events. These results support a favorable role for LA in CVD prevention

    Environmental life cycle assessment of organic pigs fed with grass protein

    No full text
    The most common protein source for organic pig production in Denmark are imported organic soy. Since feed production is a major hotspot in the climate impact of pig production, alternative local protein sources could be a climate mitigation option. One alternative protein source is “grass protein” that are based on grassland biomass and can be fed to monogastrics. Some of the benefits of the grass protein is that it is based on a local resource, which minimises the transport, and that is contributes to carbon sequestration and biodiversity, which is higher under grasslands. One of the disadvantages is that the wet biomass requires some energy for the processing and drying. The energy use for processing and transportation therefore affects the carbon footprint of the grass protein. Feeding the grass protein to organic pigs instead of organic soy might also affect the feed uptake and growth of the organic pigs, which in turn will affect the carbon footprint of the pig meat. The aim of the current paper is to investigate whether the carbon footprint will be improved by feeding grass protein to organic pigs and which factors that affects the results. The results showed that if the grass protein is based on unfertilized grass-clover, the fibre fraction is fed to cattle and the energy for the biorefining process is based on biogas from the brown juice, then feeding the pigs with 15% organic grass protein will lower the carbon footprint of the pigmeat compared to feeding with organic soy. However, the sensitivity analysis showed that the carbon footprint of the grass protein, and thus also the carbon footprint of the pigmeat, is highly dependent on the energy utilization in the biorefinery and the transport distances

    Biomarkers of dietary omega-6 fatty acids and incident cardiovascular disease and mortality: an individual-level pooled analysis of 30 cohort studies

    No full text
    corecore