3 research outputs found

    Porin loss in Klebsiella pneumoniae clinical isolates impacts production of virulence factors and survival within macrophages

    No full text
    Clinical isolates of Klebsiella pneumoniae are often resistant to beta-lactam antibiotics via the acquisition of extended spectrum beta lactamase (ESBL) enzymes paired with loss of one or both major outer membrane porins. It has been well established that loss of OmpK35 and/or OmpK36 correlates with increased minimum inhibitory concentrations of antibiotics that target the peptidoglycan. However, little is known concerning the downstream effects porin loss might have on other major virulence factors such as the polysaccharide capsule or LPS. Furthermore, it is unknown whether these cumulative changes impact pathogenesis. Therefore, the focus of this study was to identify alterations in production of the major virulence factors due to porin loss; and to investigate the effect these changes have on host pathogen interactions. Our data demonstrates that loss of a single porin is paired with reductions in capsule, increased LPS content, and up-regulated transcription of compensatory porin genes. In contrast, loss of both porins resulted in a significant increase in capsule production. Loss of OmpK35 alone or dual porin loss was further associated with reduced oxidative burst by macrophages and increased ability of the bacteria to survive phagocytic killing. These data indicate that porin loss is accompanied by a suite of changes in other virulence-associated factors. These cumulative changes act to nullify any negative fitness effect due to lack of the nonspecific porin proteins, allowing the bacteria to grow and survive phagocytic immune responses

    Potent Antiviral Activity against HSV-1 and SARS-CoV-2 by Antimicrobial Peptoids

    No full text
    Viral infections, such as those caused by Herpes Simplex Virus-1 (HSV-1) and SARS-CoV-2, affect millions of people each year. However, there are few antiviral drugs that can effectively treat these infections. The standard approach in the development of antiviral drugs involves the identification of a unique viral target, followed by the design of an agent that addresses that target. Antimicrobial peptides (AMPs) represent a novel source of potential antiviral drugs. AMPs have been shown to inactivate numerous different enveloped viruses through the disruption of their viral envelopes. However, the clinical development of AMPs as antimicrobial therapeutics has been hampered by a number of factors, especially their enzymatically labile structure as peptides. We have examined the antiviral potential of peptoid mimics of AMPs (sequence-specific N-substituted glycine oligomers). These peptoids have the distinct advantage of being insensitive to proteases, and also exhibit increased bioavailability and stability. Our results demonstrate that several peptoids exhibit potent in vitro antiviral activity against both HSV-1 and SARS-CoV-2 when incubated prior to infection. In other words, they have a direct effect on the viral structure, which appears to render the viral particles non-infective. Visualization by cryo-EM shows viral envelope disruption similar to what has been observed with AMP activity against other viruses. Furthermore, we observed no cytotoxicity against primary cultures of oral epithelial cells. These results suggest a common or biomimetic mechanism, possibly due to the differences between the phospholipid head group makeup of viral envelopes and host cell membranes, thus underscoring the potential of this class of molecules as safe and effective broad-spectrum antiviral agents. We discuss how and why differing molecular features between 10 peptoid candidates may affect both antiviral activity and selectivity
    corecore