2 research outputs found

    Anti-inflammatory Effects of Extracellular Cyclosporins Are Exclusively Mediated by CD147

    No full text
    Leukocyte trafficking and recruitment is a critical process in host immune surveillance and in inflammatory diseases. Extracellular cyclophilins (eCyps) have been identified as a novel class of chemotactic mediators. The impact of eCyp/CD147 interactions for the recruitment of leukocytes during inflammation was analyzed using a structurally simplified cell-impermeable eCyp inhibitor. This compound was highly effective at inhibiting leukocyte migration toward CypA in vitro as well as in the recruitment of leukocytes during inflammation in a mouse model of experimentally induced peritonitis and delayed-type hypersensitivity reaction. By using CD147–/– mice in combination with the cell-impermeable eCyp inhibitor, we were able to show that the action of eCyps in inflammation is exclusively mediated by interaction with CD147. Our findings suggest that blocking eCyps may be an effective therapeutic target for reducing inflammatory diseases associated with leukocyte recruitment

    Structure and Biomedical Applications of Amyloid Oligomer Nanoparticles

    No full text
    Amyloid oligomers are nonfibrillar polypeptide aggregates linked to diseases, such as Alzheimer’s and Parkinson’s. Here we show that these aggregates possess a compact, quasi-crystalline architecture that presents significant nanoscale regularity. The amyloid oligomers are dynamic assemblies and are able to release their individual subunits. The small oligomeric size and spheroid shape confer diffusible characteristics, electrophoretic mobility, and the ability to enter hydrated gel matrices or cells. We finally showed that the amyloid oligomers can be labeled with both fluorescence agents and iron oxide nanoparticles and can target macrophage cells. Oligomer amyloids may provide a new biological nanomaterial for improved targeting, drug release, and medical imaging
    corecore