4 research outputs found

    Effects of sequential enzymatic hydrolysis on structural, bioactive and functional properties of Phaseolus lunatus protein isolate

    No full text
    Significant initiatives exist within the global food market to search for new, alternative protein sources with better technological, functional, and nutritional properties. Lima bean (Phaseolus lunatus L.) protein isolate was hydrolyzed using a sequential pepsin-pancreatin enzymatic system. Hydrolysis was performed to produce limited (LH) and extensive hydrolysate (EH), each with different degrees of hydrolysis (DH). The effects of hydrolysis were evaluated in vitro in both hydrolysates based on structural, functional and bioactive properties. Structural properties analyzed by electrophoretic profile indicated that LH showed residual structures very similar to protein isolate (PI), although composed of mixtures of polypeptides that increased hydrophobic surface and denaturation temperature. Functionality of LH was associated with amino acid composition and hydrophobic/hydrophilic balance, which increased solubility at values close to the isoelectric point. Foaming and emulsifying activity index values were also higher than those of PI. EH showed a structure composed of mixtures of polypeptides and peptides of low molecular weight, whose intrinsic hydrophobicity and amino acid profile values were associated with antioxidant capacity, as well as inhibiting angiotensin-converting enzyme. The results obtained indicated the potential of Phaseolus lunatus hydrolysates to be incorporated into foods to improve techno-functional properties and impart bioactive properties

    Hydrogen Sulfide Production with a Microbial Consortium Isolated from Marine Sediments Offshore

    No full text
    Hydrogen, electric energy production, and metal toxic bioremediation are some of the biotechnological applications of sulfate-reducing organisms, which potentially depend on the sulfide produced. In this study, offshore of Yucatan, the capacity to produce hydrogen sulfide using microbial consortia from marine sediment (SC469, PD102, SD636) in batch reactors was evaluated. Kinetic tests were characterized by lactate oxidation to acetate, propionate, CO2 and methane. The inoculum SC469, located in open-ocean, differed strongly in microbial diversity and showed better performance in substrate utilization with the highest hydrogen sulfide production (246 mmolg−1 VSS) at a specific hydrogen sulfide rate of 113 mmol g−1 VSS d−1 with a 0.79 molar ratio of sulfate/lactate. Sulfate-reducing microbial consortia enriched in the laboratory from marine sediments collected offshore in Yucatan and with a moderate eutrophication index, differed strongly in microbial diversity with loss of microorganisms with greater capacity for degradation of organic macromolecules. The sulfate-reducing microorganisms were characterized using Illumina MiSeq technology and were mainly Desulfomicrobium, Clostridium and Desulfobacter

    Fatty Acids, Hydrocarbons and Terpenes of Nannochloropsis and Nannochloris Isolates with Potential for Biofuel Production

    No full text
    Marine microalgae are a promising feedstock for biofuel production given their high growth rates and biomass production together with cost reductions due to the use of seawater for culture preparation. However, different microalgae species produce different families of compounds. Some compounds could be used directly as fuels, while others require thermochemical processing to obtain quality biofuels. This work focuses on the characterization of three marine microalgae strains native in Mexico and reported for the first time. Ultrastructure and phylogenetic analysis, suggested that they belong to Nannochloropsis sp. (NSRE-1 and NSRE-2) and Nannochloris sp. (NRRE-1). The composition of their lipid fractions included hydrocarbons, triacylglycerides (TAGs), free fatty acids (FFAs) and terpenes. Based on theoretical estimations from TAG and FFA composition, the potential biodiesels were found to comply with six of the seven estimated properties (ASTM D6751 and EN 14214). On the other hand, hydrocarbons and terpenes synthesized by the strains have outstanding potential as precursors for the production of other renewable fuels, mainly green diesel and bio-jet fuel, which are “drop-in” fuels with quality properties similar to fossil fuels. The validity of this theoretical analysis was demonstrated for the oxygenates of strain NSRE-2, which were experimentally hydrodeoxygenated, obtaining a high-quality renewable diesel as the reaction product
    corecore