18 research outputs found

    Papez’s Forgotten Tract: 80 Years of Unreconciled Findings Concerning the Thalamocingulate Tract

    Get PDF
    The thalamocingulate tract is a key component of the Papez circuit that connects the anterior thalamic nucleus (ATN) to the cingulum bundle. While the other white matter connections, consisting of the fornix, cingulum bundle and mammillothalamic tract, were well defined in Papez’s original 1937 paper, the anatomy of the thalamocingulate pathway was mentioned only in passing. Subsequent research has been unable to clarify the precise anatomical trajectory of this tract. In particular, the site of thalamocingulate tract interactions with the cingulum bundle have been inconsistently reported. This review aims to synthesize research on this least studied component of the Papez circuit. A systemic approach to reviewing historical anatomical dissection and neuronal tracing studies as well as contemporary diffusion magnetic resonance imaging studies of the thalamocingulate tract was undertaken across species. We found that although inconsistent, prior research broadly encompasses two differing descriptions of how the ATN interfaces with the cingulum after passing laterally through the anterior limb of the internal capsule. The first group of studies show that the pathway turns medially and rostrally and passes to the anterior cingulate region (Brodmann areas 24, 33, and 32) only. A second group suggests that the thalamocingulate tract interfaces with both the anterior and posterior cingulate (Brodmann areas 23 and 31) and retrosplenial region (Brodmann area 29). We discuss potential reasons for these discrepancies such as altering methodologies and species differences. We also discuss how these inconsistencies may be resolved in further research with refinements of terminology for the cingulate cortex and the thalamocingulate tract. Understanding the precise anatomical course of the last remaining unresolved final white matter tract in the Papez circuit may facilitate accurate investigation of the role of the complete Papez circuit in emotion and memory

    3.3 Diffusion MRI Data Processing and Analysis: A Practical Guide with ExploreDTI

    No full text
    https://osf.io/mbyjh This chapter introduces neuroimaging researchers to the concepts and techniques of diffusion magnetic resonance imaging data processing. Using the freely available ExploreDTI software, we provide a step-by-step guide for processing multi-shell High Angular Resolution Diffusion Imaging data and generating tractography based on constrained deconvolution. Brief explanations of the rationale behind each processing step are provided to aid the researcher in understanding the concepts and principles involved. Potential processing pitfalls will be discussed, and tips for troubleshooting common issues will be provided. An addtional step-by-step guide for processing DTI data using the open-access AOMIC data set is also provided, demonstrating command-line that can also be applied to process other large neuroimaging datasets

    Diffusion MRI Data Processing and Analysis: A Practical Guide with ExploreDTI

    No full text
    This chapter introduces neuroimaging researchers to the concepts and techniques of diffusion magnetic resonance imaging data processing. Using the freely available ExploreDTI software, we provide a step-by-step guide for processing multi-shell High Angular Resolution Diffusion Imaging data and generating tractography based on constrained deconvolution. Brief explanations of the rationale behind each processing step are provided to aid the researcher in understanding the concepts and principles involved. Potential processing pitfalls will be discussed, and tips for troubleshooting common issues will be provided. An addtional step-by-step guide for processing DTI data using the open-access AOMIC data set is also provided, demonstrating command-line that can also be applied to process other large neuroimaging datasets

    Longitudinal Gray Matter Development Associated With Psychotic Experiences in Young People

    No full text
    Background: Gray matter abnormalities are observed across the psychosis spectrum. The trajectory of these abnormalities in healthy adolescents reporting subthreshold psychotic experiences (PEs) may provide insight into the neural mechanisms underlying psychotic symptoms. The risk of psychosis and additional psychopathology is even higher among these individuals who also report childhood adversity/DSM-5 diagnoses. Thus, the aims of this longitudinal study were to investigate PE-related volumetric changes in young people, noting any effects of childhood adversity/DSM-5 diagnosis. Methods: A total of 211 young people 11 to 13 years of age participated in the initial Adolescent Brain Development study. PE classification was determined by expert consensus at each time point. Participants underwent neuroimaging at 3 time points over 6 years. A total of 76 participants with at least one scan were included in the final sample; 34 who met criteria for PEs at least once across all the time points (PE group) and 42 control subjects. Data from 20 bilateral regions of interest were extracted for linear mixed-effects analyses. Results: Right hippocampal volume increased over time in the control group, with no increase in the PE group (p = .00352). DSM-5 diagnosis and childhood adversity were not significantly associated with right hippocampal volume. There was no significant effect of group or interaction in any other region. Conclusions: These findings further implicate right hippocampal volumetric abnormalities in the pathophysiology underlying PEs. Furthermore, as suggested by previous studies in those at clinical high risk for psychosis and those with first-episode psychosis, it is possible that these deficits may be a marker for later clinical outcomes

    Genome-wide schizophrenia variant at mir137 does not impact white matter microstructure in healthy participants

    No full text
    A single nucleotide polymorphism (SNP rs1625579) within the micro-RNA 137 (MIR137) gene recently achieved strong genome-wide association with schizophrenia (SZ). However, the mechanisms by which SZ risk may be mediated by this variant are unknown. As miRNAs have the potential to influence oligodendrocyte development, we investigated whether this SNP was associated with variability in white matter (WM) microstructure. Diffusion tensor imaging (DTI) was conducted on 123 healthy participants genotyped for rs1625579. The analysis consisted of whole-brain tract-based spatial statistics and atlas-based tractography analysis of six major WM tracts known to be affected in SZ – the inferior longitudinal fasciculus, the uncinate fasciculus, the inferior fronto-occipital fasciculus, the anterior thalamic radiation, the cingulum bundle and the corpus callosum. No significant differences in either whole-brain fractional anisotropy or mean diffusivity between MIR137 genotype groups were observed (p > 0.05). Similarly, atlas-based tractography of particular tracts implicated in SZ failed to reveal any significant differences between MIR137 genotype groups on measures of WM connectivity (p > 0.05). In the absence of WM effects comparable to those reported for other SZ associated genes, these data suggest that MIR137 alone may not confer variability in these WM measures and therefore may not act in isolation for any effects that the variant may have on WM microstructure in SZ samples

    Examining the Role of the Noradrenergic Locus Coeruleus for Predicting Attention and Brain Maintenance in Healthy Old Age and Disease: An MRI Structural Study for the Alzheimer’s Disease Neuroimaging Initiative

    No full text
    The noradrenergic theory of Cognitive Reserve (Robertson, 2013–2014) postulates that the upregulation of the locus coeruleus—noradrenergic system (LC–NA) originating in the brainstem might facilitate cortical networks involved in attention, and protracted activation of this system throughout the lifespan may enhance cognitive stimulation contributing to reserve. To test the above-mentioned theory, a study was conducted on a sample of 686 participants (395 controls, 156 mild cognitive impairment, 135 Alzheimer’s disease) investigating the relationship between LC volume, attentional performance and a biological index of brain maintenance (BrainPAD—an objective measure, which compares an individual’s structural brain health, reflected by their voxel-wise grey matter density, to the state typically expected at that individual’s age). Further analyses were carried out on reserve indices including education and occupational attainment. Volumetric variation across groups was also explored along with gender differences. Control analyses on the serotoninergic (5-HT), dopaminergic (DA) and cholinergic (Ach) systems were contrasted with the noradrenergic (NA) hypothesis. The antithetic relationships were also tested across the neuromodulatory subcortical systems. Results supported by Bayesian modelling showed that LC volume disproportionately predicted higher attentional performance as well as biological brain maintenance across the three groups. These findings lend support to the role of the noradrenergic system as a key mediator underpinning the neuropsychology of reserve, and they suggest that early prevention strategies focused on the noradrenergic system (e.g., cognitive-attentive training, physical exercise, pharmacological and dietary interventions) may yield important clinical benefits to mitigate cognitive impairment with age and disease

    Awakening Neuropsychiatric Research Into the Stria Medullaris: Development of a Diffusion-Weighted Imaging Tractography Protocol of This Key Limbic Structure

    No full text
    The Stria medullaris (SM) Thalami is a discrete white matter tract that directly connects frontolimbic areas to the habenula, allowing the forebrain to influence midbrain monoaminergic output. Habenular dysfunction has been shown in various neuropsychiatric conditions. However, there exists a paucity of research into the habenula’s principal afferent tract, the SM. Diffusion-weighted tractography may provide insights into the properties of the SM in vivo, opening up investigation of this tract in conditions of monoamine dysregulation such as depression, schizophrenia, addiction and pain. We present a reliable method for reconstructing the SM using diffusion-weighted imaging, and examine the effects of age and gender on tract diffusion metrics. We also investigate reproducibility of the method through inter-rater comparisons. In consultation with neuroanatomists, a Boolean logic gate protocol was developed for use in ExploreDTI to extract the SM from constrained spherical deconvolution based whole brain tractography. Particular emphasis was placed on the reproducibility of the tract, attention to crossing white matter tract proximity and anatomical consistency of anterior and posterior boundaries. The anterior commissure, pineal gland and mid point of the thalamus were defined as anatomical fixed points used for reconstruction. Fifty subjects were scanned using High Angular Resolution Diffusion Imaging (HARDI; 61 directions, b-value 1500 mm3). Following constrained spherical deconvolution whole brain tractography, two independent raters isolated the SM. Each output was checked, examined and cleaned for extraneous streamlines inconsistent with known anatomy of the tract by the rater and a neuroanatomist. A second neuroanatomist assessed tracts for face validity. The SM was reconstructed with excellent inter-rater reliability for dimensions and diffusion metrics. Gender had no effect on the dimensions or diffusion metrics, however radial diffusivity (RD) showed a positive correlation with age. Reliable identification and quantification of diffusion metrics of the SM invites further exploration of this key habenula linked structure in neuropsychiatric disorders such as depression, anxiety, chronic pain and addiction. The accurate anatomical localization of the SM may also aid preoperative stereotactic localization of the tract for deep brain stimulation (DBS) treatment

    A comprehensive regional neurochemical theory in depression: a protocol for the systematic review and meta-analysis of 1H-MRS studies in major depressive disorder

    No full text
    Abstract Background Magnetic resonance spectroscopy (MRS) is a non-invasive analytical technique that investigates the presence and concentrations of brain metabolites. In the context of major depressive disorder (MDD), MRS has revealed regional biochemical changes in GABA, glutamate, and choline across different brain compartments. Technical and methodological advances in MRS data acquisition, in particular proton-based 1H-MRS, have resulted in a significant increase in the incidence of reports utilizing the technique for psychiatric disorder research and diagnosis. The most recent comprehensive meta-analysis reviewing MRS in MDD stems from 2006. Using contemporary systemic reviews and meta-analysis, the aim is to first test a neurochemical circuit-based theory of depression and then to determine if clinical scores relate to metabolite concentrations before and during treatment. Methods Region-specific metabolite changes in MDD will be assessed by systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Inclusion criteria will include participant age (18 to 65), English language studies, known regions of interest, and detailed documentation of 1H-MRS procedures. Reported brain regions will be standardized according neuroanatomical expertise allowing increased power of the meta-analysis. Regions of interest will initially include the hippocampus, thalamus, prefrontal cortex, anterior and posterior cingulate gyri, parietal lobe, and basal ganglia. Exclusion criteria will include comorbid psychiatric illness and drug use. Two independent reviewers will undertake all data extraction, while a third reviewer will check for reviewer discrepancies. Statistical analysis will be performed using STATA supplemented by Metan software and SPSS. Discussion This data will shed new light on the biochemical basis of depression in different brain regions, thereby highlighting the potential of MRS in identifying biomarkers and generating models of MDD and treatment response. Systematic review registration PROSPERO CRD4201809149

    Functional connectivity anomalies in adolescents with psychotic symptoms

    No full text
    Background: Previous magnetic resonance imaging (MRI) research suggests that, prior to the onset of psychosis, high risk youths already exhibit brain abnormalities similar to those present in patients with schizophrenia. Objectives: The goal of the present study was to describe the functional organization of endogenous activation in young adolescents who report auditory verbal hallucinations (AVH) in view of the “distributed network” hypothesis of psychosis. We recruited 20 young people aged 13–16 years who reported AVHs and 20 healthy controls matched for age, gender and handedness from local schools. Methods: Each participant underwent a semi-structured clinical interview and a resting state (RS) neuroimaging protocol. We explored functional connectivity (FC) involving three different networks: 1) default mode network (DMN) 2) salience network (SN) and 3) central executive network (CEN). In line with previous findings on the role of the auditory cortex in AVHs as reported by young adolescents, we also investigated FC anomalies involving both the primary and secondary auditory cortices (A1 and A2, respectively). Further, we explored between-group inter-hemispheric FC differences (laterality) for both A1 and A2. Compared to the healthy control group, the AVH group exhibited FC differences in all three networks investigated. Moreover, FC anomalies were found in a neural network including both A1 and A2. The laterality analysis revealed no between-group, inter-hemispheric differences. Conclusions: The present study suggests that young adolescents with subclinical psychotic symptoms exhibit functional connectivity anomalies directly and indirectly involving the DMN, SN, CEN and also a neural network including both primary and secondary auditory cortical regions
    corecore