95 research outputs found

    Genetic Variation and Atherosclerosis

    Get PDF
    A family history of atherosclerosis is independently associated with an increased incidence of cardiovascular events. The genetic factors underlying the importance of inheritance in atherosclerosis are starting to be understood. Genetic variation, such as mutations or common polymorphisms has been shown to be involved in modulation of a range of risk factors, such as plasma lipoprotein levels, inflammation and vascular calcification. This review presents examples of present studies of the role of genetic polymorphism in atherosclerosis

    Conventional and specific-pathogen free rats respond differently to anesthesia and surgical trauma

    Get PDF
    Specific-pathogen free (SPF) animals were introduced in the 1960s to minimize disease and infection as variables in biomedical research. Our aim was to examine differences in physiological response in rat colonies bred and housed in a conventional versus SPF facility, and implications for research. Sprague-Dawley rats were anesthetized and catheterized for blood and pressure monitoring, and electrocardiogram (ECG) leads implanted. Hematology was assessed, and coagulation profile using rotational thromboelastometry. Health screening was outsourced to Cerberus Sciences. SPF rats had significantly lower pulse pressure (38% decrease), arrhythmias and prolonged QTc (27% increase) compared to conventional rats. No arrhythmias were found in conventional rats. SPF rats had significantly higher white cell, monocyte, neutrophil and lymphocyte counts, and were hyperfibrinolytic, indicated by EXTEM maximum lysis >15%. Independent assessment revealed similar pathogen exclusion between colonies, with the exception of Proteus in SPF animals. Returning to a conventional facility restored normal host physiology. We conclude that SPF animals displayed an abnormal hemodynamic, hematological and hemostatic phenotype in response to anesthesia and surgery, and provide a number of recommendations to help standardize research outcomes and translation

    Distinct ground reaction forces in gait between the paretic and non-paretic leg of stroke patients: a paradigm for innovative physiotherapy intervention

    Get PDF
    This case report study aims to identify the differences in the ground reaction forces (GRF) placed on the forefoot, hindfoot, and entire foot between the paretic and non-paretic legs in two stroke patients to identify potential targets for improved physiotherapy treatment. A digital gait analysis foot pressure insole was fitted inside the participants’ shoes to measure the percentage of body weight taken during the stance phase, and the vertical GRF of the two subjects are reported in this paper. Both patients presented noteworthy differences in gait parameters individually and between their paretic and non-paretic legs. The trend shows a decreased percentage of body weight on the paretic forefoot and hindfoot, although the percentage bodyweight placed on the entire foot remained similar in both feet. The gait patterns shown were highly individual and indicated that both legs were affected to some degree. These findings identify key motion targets for an improved physiotherapy treatment following a stroke, suggesting that physiotherapy treatment should be targeted and individually tailored and should include both extremities

    Specific pathogen-free (SPF) animal status as a variable in biomedical research: have we come full circle?

    Get PDF
    In this commentary, we discuss the pros and cons of using specific pathogen-free (SPF) animals in biomedical research, and present individual cases where altering the gut microbiome has dramatically changed the animal's basic physiology, immune/inflammatory functions and susceptibility to infection and disease. We argue that SPF manipulation of the microbiome-host relationship has itself become a confounding variable in biomedical research, which could have major implications to human translation

    Blockade of mini-TrpRS for treatment of diabetic foot syndrome

    Get PDF
    Diabetic foot syndrome demonstrates wound chronicity due to impaired tissue perfusion in lower limbs. Previous studies showed interferon-gamma (IFN-γ), a central inflammatory mediator in diabetic foot syndrome, to induce the truncated form of tryptophanyl-tRNA synthetase (mini-TrpRS) that has strong angiostatic properties. Recently we reported that mini-TrpRS signalling could be blocked in the presence of IFN-γ with D-tryptophan in vitro. Here we discuss the IFN-γ/mini-TrpRS axis in the pathology of diabetic foot syndrome and emerging therapeutic options

    Living in a hostile world: inflammation, new drug development, and coronavirus

    Get PDF
    We present a brief history of the immune response and show that Metchnikoff’s theory of inflammation and phagocytotic defense was largely ignored in the 20th century. For decades, the immune response was believed to be triggered centrally, until Lafferty and Cunningham proposed the initiating signal came from the tissues. This shift opened the way for Janeway’s pattern recognition receptor theory, and Matzinger’s danger model. All models failed to appreciate that without inflammation, there can be no immune response. The situation changed in the 1990s when cytokine biology was rapidly advancing, and the immune system’s role expanded from host defense, to the maintenance of host health. An inflammatory environment, produced by immune cells themselves, was now recognized as mandatory for their attack, removal and repair functions after an infection or injury. We explore the cellular programs of the immune response, and the role played by cytokines and other mediators to tailor the right response, at the right time. Normally, the immune response is robust, self-limiting and restorative. However, when the antigen load or trauma exceeds the body’s internal tolerances, as witnessed in some COVID-19 patients, excessive inflammation can lead to increased sympathetic outflows, cardiac dysfunction, coagulopathy, endothelial and metabolic dysfunction, multiple organ failure and death. Currently, there are few drug therapies to reduce excessive inflammation and immune dysfunction. We have been developing an intravenous (IV) fluid therapy comprising adenosine, lidocaine and Mg2+ (ALM) that confers a survival advantage by preventing excessive inflammation initiated by sepsis, endotoxemia and sterile trauma. The multi-pronged protection appears to be unique and may provide a tool to examine the intersection points in the immune response to infection or injury, and possible ways to prevent secondary tissue damage, such as that reported in patients with COVID-19

    Metabolic and anthropometric influences on nerve conduction parameters in patients with peripheral neuropathy: a retrospective chart analysis

    Get PDF
    Background and Aims: Nerve conduction study (NCS) measures how fast an electrical impulse moves through the nerve and is a standard technique for diagnosing and assessing neurological diseases. Despite diabetes and obesity being a common accompaniment of peripheral neuropathy, their effects on NCS patterns have not been elucidated conclusively. Our study aimed to assess several anthropometric and metabolic factors with NCS outcomes to address this gap. Research Design and Methods: This retrospective chart analysis study was conducted on subjects who underwent NCS between 1 January 2009 and 31 December 2019 at a regional hospital. Metabolic, anthropometric, demographical and NCS data were collected from patients’ health records. Results: In total, 120 subjects presenting with sensorimotor peripheral neuropathy symptoms were included in the study. Age, HbA1c, urea and ESR variables were significantly negatively associated with nerve conduction outcomes (Spearman’s correlation rho between −0.210 and −0.456, p < 0.038). HbA1c and age consistently had the most substantial contribution to velocity and amplitude in all regression models (beta coefficients between −0.157 and 0.516, p < 0.001). Urea also significantly account for a large amount of variance in amplitude and velocity in the lower limbs. Conclusion: This study suggests that the severity of sensorimotor neuropathy is influenced by glycaemic control, age and uraemia. The interpretation of NCS results must consider these factors suggesting that improved glycaemic and uraemic control may improve nerve conduction outcomes

    Upregulation of arylsulfatase B in carotid atherosclerosis is associated with symptoms of cerebral embolization

    Get PDF
    The aim of this study was to identify genes for which the expression within carotid atherosclerosis was reproducibly associated with the symptoms of cerebral embolization. Two publically available microarray datasets E-MEXP-2257 and GSE21545 were analysed using GeneSpring 11.5. The two datasets utilized a total of 22 and 126 carotid atherosclerosis samples, obtained from patients with and without symptoms of cerebral embolization, respectively. To assess whether the findings were reproducible we analysed carotid atherosclerosis samples from another 8 patients with and 7 patients without symptoms of cerebral embolization using real-time PCR. In vitro studies using VSMC were performed to assess the functional relevance of one of the validated genes. We identified 1624 and 135 differentially expressed genes within carotid atherosclerosis samples of symptomatic compared to asymptomatic patients using the E-MEXP-2257 and GSE21545 datasets, respectively (≥1.15-absolute fold-change, P < 0.05). Only 7 differentially expressed genes or 0.4% (7/1,752) were consistent between the datasets. We validated the differential expression of ARSB which was upregulated 1.15-fold (P = 0.029) in atherosclerosis from symptomatic patients. In vitro incubation of VSMCs with the ARSB inhibitor L-ascorbic acid resulted in marked upregulation of SIRT1 and AMPK. This study suggests that ARSB may represent a novel target to limit carotid embolization

    Major surgery leads to a proinflammatory phenotype: differential gene expression following a laparotomy

    Get PDF
    Background: The trauma of surgery is a neglected area of research. Our aim was to examine the differential expression of genes of stress, metabolism and inflammation in the major organs of a rat following a laparotomy. Materials and methods: Anaesthetised Sprague-Dawley rats were randomised into baseline, 6-hr and 3-day groups (n = 6 each), catheterised and laparotomy performed. Animals were sacrificed at each timepoint and tissues collected for gene and protein analysis. Blood stress hormones, cytokines, endothelial injury markers and coagulation were measured. Results: Stress hormone corticosterone significantly increased and was accompanied by significant increases in inflammatory cytokines, endothelial markers, increased neutrophils (6-hr), higher lactate (3-days), and coagulopathy. In brain, there were significant increases in M1 muscarinic (31-fold) and α-1A-adrenergic (39-fold) receptor expression. Cortical expression of metabolic genes increased ∼3-fold, and IL-1β by 6-fold at 3-days. Cardiac β-1-adrenergic receptor expression increased up to 8.4-fold, and M2 and M1 muscarinic receptors by 2 to 4-fold (6-hr). At 3-days, cardiac mitochondrial gene expression (Tfam, Mtco3) and inflammation (IL-1α, IL-4, IL-6, MIP-1α, MCP-1) were significantly elevated. Haemodynamics remained stable. In liver, there was a dramatic suppression of adrenergic and muscarinic receptor expression (up to 90%) and increased inflammation. Gut also underwent autonomic suppression with 140-fold increase in IL-1β expression (3-days). Conclusions: A single laparotomy led to a surgical-induced proinflammatory phenotype involving neuroendocrine stress, cortical excitability, immune activation, metabolic changes and coagulopathy. The pervasive nature of systemic and tissue inflammation was noteworthy. There is an urgent need for new therapies to prevent hyper-inflammation and restore homeostasis following major surgery

    Female rats have a different healing phenotype than males after anterior cruciate ligament rupture with no intervention

    Get PDF
    Little is known on the sex-specific healing responses after an anterior cruciate ligament (ACL) rupture. To address this, we compared male and female Sprague-Dawley rats following non-surgical ACL rupture. Hematology, inflammation, joint swelling, range of motion, and pain-sensitivity were analyzed at various times over 31-days. Healing was assessed by histopathology and gene expression changes in the ACL remnant and adjacent joint tissues. In the first few days, males and females showed similar functional responses after rupture, despite contrasting hematology and systemic inflammatory profiles. Sex-specific differences were found in inflammatory, immune and angiogenic potential in the synovial fluid. Histopathology and increased collagen and fibronectin gene expression revealed significant tissue remodeling in both sexes. In the ACL remnant, however, Acta2 gene expression (α-SMA production) was 4-fold higher in males, with no change in females, indicating increased fibroblast-to-myofibroblast transition with higher contractile elements (stiffness) in males. Females had 80% lower Pparg expression, which further suggests reduced cellular differentiation potential in females than males. Sex differences were also apparent in the infrapatellar fat pad and articular cartilage. We conclude females and males showed different patterns of healing post-ACL rupture over 31-days, which may impact timing of reconstruction surgery, and possibly clinical outcome
    • …
    corecore