4 research outputs found

    Quantum Descriptors for Predicting and Understanding the Structure–Activity Relationships of Michael Acceptor Warheads

    No full text
    Predictive modeling and understanding of chemical warhead reactivities have the potential to accelerate targeted covalent drug discovery. Recently, the carbanion formation free energies as well as other ground-state electronic properties from density functional theory (DFT) calculations have been proposed as predictors of glutathione reactivities of Michael acceptors; however, no clear consensus exists. By profiling the thiol-Michael reactions of a diverse set of singly- and doubly-activated olefins, including several model warheads related to afatinib, here we reexamined the question of whether low-cost electronic properties can be used as predictors of reaction barriers. The electronic properties related to the carbanion intermediate were found to be strong predictors, e.g., the change in the Cβ charge accompanying carbanion formation. The least expensive reactant-only properties, the electrophilicity index, and the Cβ charge also show strong rank correlations, suggesting their utility as quantum descriptors. A second objective of the work is to clarify the effect of the β-dimethylaminomethyl (DMAM) substitution, which is incorporated in the warheads of several FDA-approved covalent drugs. Our data suggest that the β-DMAM substitution is cationic at neutral pH in solution and promotes acrylamide’s intrinsic reactivity by enhancing the charge accumulation at Cα upon carbanion formation. In contrast, the inductive effect of the β-trimethylaminomethyl substitution is diminished due to steric hindrance. Together, these results reconcile the current views of the intrinsic reactivities of acrylamides and contribute to large-scale predictive modeling and an understanding of the structure–activity relationships of Michael acceptors for rational TCI design

    Quantum Descriptors for Predicting and Understanding the Structure–Activity Relationships of Michael Acceptor Warheads

    No full text
    Predictive modeling and understanding of chemical warhead reactivities have the potential to accelerate targeted covalent drug discovery. Recently, the carbanion formation free energies as well as other ground-state electronic properties from density functional theory (DFT) calculations have been proposed as predictors of glutathione reactivities of Michael acceptors; however, no clear consensus exists. By profiling the thiol-Michael reactions of a diverse set of singly- and doubly-activated olefins, including several model warheads related to afatinib, here we reexamined the question of whether low-cost electronic properties can be used as predictors of reaction barriers. The electronic properties related to the carbanion intermediate were found to be strong predictors, e.g., the change in the Cβ charge accompanying carbanion formation. The least expensive reactant-only properties, the electrophilicity index, and the Cβ charge also show strong rank correlations, suggesting their utility as quantum descriptors. A second objective of the work is to clarify the effect of the β-dimethylaminomethyl (DMAM) substitution, which is incorporated in the warheads of several FDA-approved covalent drugs. Our data suggest that the β-DMAM substitution is cationic at neutral pH in solution and promotes acrylamide’s intrinsic reactivity by enhancing the charge accumulation at Cα upon carbanion formation. In contrast, the inductive effect of the β-trimethylaminomethyl substitution is diminished due to steric hindrance. Together, these results reconcile the current views of the intrinsic reactivities of acrylamides and contribute to large-scale predictive modeling and an understanding of the structure–activity relationships of Michael acceptors for rational TCI design

    Quantum Descriptors for Predicting and Understanding the Structure–Activity Relationships of Michael Acceptor Warheads

    No full text
    Predictive modeling and understanding of chemical warhead reactivities have the potential to accelerate targeted covalent drug discovery. Recently, the carbanion formation free energies as well as other ground-state electronic properties from density functional theory (DFT) calculations have been proposed as predictors of glutathione reactivities of Michael acceptors; however, no clear consensus exists. By profiling the thiol-Michael reactions of a diverse set of singly- and doubly-activated olefins, including several model warheads related to afatinib, here we reexamined the question of whether low-cost electronic properties can be used as predictors of reaction barriers. The electronic properties related to the carbanion intermediate were found to be strong predictors, e.g., the change in the Cβ charge accompanying carbanion formation. The least expensive reactant-only properties, the electrophilicity index, and the Cβ charge also show strong rank correlations, suggesting their utility as quantum descriptors. A second objective of the work is to clarify the effect of the β-dimethylaminomethyl (DMAM) substitution, which is incorporated in the warheads of several FDA-approved covalent drugs. Our data suggest that the β-DMAM substitution is cationic at neutral pH in solution and promotes acrylamide’s intrinsic reactivity by enhancing the charge accumulation at Cα upon carbanion formation. In contrast, the inductive effect of the β-trimethylaminomethyl substitution is diminished due to steric hindrance. Together, these results reconcile the current views of the intrinsic reactivities of acrylamides and contribute to large-scale predictive modeling and an understanding of the structure–activity relationships of Michael acceptors for rational TCI design

    Characterizing Hydrogen-Bond Interactions in Pyrazinetetracarboxamide Complexes: Insights from Experimental and Quantum Topological Analyses

    No full text
    Experimental and topological analyses of dipalladium­(II) complexes with pyrazinetetracarboxamide ligands containing tetraethyl (<b>1</b>), tetrahexyl (<b>2</b>), and tetrakis­(2-hydroxyethyl) ethyl ether (<b>3</b>) are described. The presence of two very short O---O distances between adjacent amide carbonyl groups in the pincer complexes revealed two protons, which necessitated two additional anions to satisfy charge requirements. The results of the crystal structures indicate carbonyl O---O separations approaching that of low barrier hydrogen bonds, ranging from 2.413(5) to 2.430(3) Å. Solution studies and quantum topological analyses, the latter including electron localization function, noncovalent interaction, and Bader’s quantum theory of atoms in molecules, were carried out to probe the nature of the short hydrogen bonds and the influence of the ligand environment on their strength. Findings indicated that the ligand field, and, in particular, the counterion at the fourth coordination site, may play a subtle role in determining the degree of covalent association of the bridging protons with one or the other carbonyl groups
    corecore