52 research outputs found

    Alaska Natives and American Laws

    Get PDF
    In this thesis we focus on the issue of crowdfunding and especially how a project relates to and embraces its community. While a lot of related research focus on what makes people give, our research instead delve into whether a creator looks upon the sponsors as something more than just a financial resource. To manage this task we used a triangular perspective consisting of a case study, a questionnaire and a netnographic study. The goal was to gain the perspectives of creators, crowdfunding platforms and sponsors on how the communication between the community and the project works and can be improved.        The three crowdfunding platforms we reviewed (Kickstarter, IndieGoGo, Rockethub) all had fairly similar models on how to attract sponsors and make them involved in the project, while the questionnaire and netnographic study demonstrated how a community could contribute in different ways. Based on our results we draw the conclusion that a project can be successful without embracing the creative qualities of its sponsors but doing so also is a waste of a great asset to both current and future projects.

    On Frame Asynchronous Coded Slotted ALOHA: Asymptotic, Finite Length, and Delay Analysis

    Get PDF
    We consider a frame asynchronous coded slotted ALOHA (FA-CSA) system for uncoordinated multiple access, where users join the system on a slot-by-slot basis according to a Poisson random process and, in contrast to standard frame synchronous CSA (FS-CSA), users are not frame-synchronized. We analyze the performance of FA-CSA in terms of packet loss rate and delay. In particular, we derive the (approximate) density evolution that characterizes the asymptotic performance of FA-CSA when the frame length goes to infinity. We show that, if the receiver can monitor the system before anyone starts transmitting, a boundary effect similar to that of spatially-coupled codes occurs, which greatly improves the iterative decoding threshold. Furthermore, we derive tight approximations of the error floor (EF) for the finite frame length regime, based on the probability of occurrence of the most frequent stopping sets. We show that, in general, FA-CSA provides better performance in both the EF and waterfall regions as compared to FS-CSA. Moreover, FA-CSA exhibits better delay properties than FS-CSA.Comment: 13 pages, 12 figures. arXiv admin note: substantial text overlap with arXiv:1604.0629

    On Channel Estimation for 802.11p in Highly Time-Varying Vehicular Channels

    Get PDF
    Vehicular wireless channels are highly time-varying and the pilot pattern in the 802.11p orthogonal frequency-division multiplexing frame has been shown to be ill suited for long data packets. The high frame error rate in off-the-shelf chipsets with noniterative receiver configurations is mostly due to the use of outdated channel estimates for equalization. This paper deals with improving the channel estimation in 802.11p systems using a cross layered approach, where known data bits are inserted in the higher layers and a modified receiver makes use of these bits as training data for improved channel estimation. We also describe a noniterative receiver configuration for utilizing the additional training bits and show through simulations that frame error rates close to the case with perfect channel knowledge can be achieved.Comment: 6 pages, 11 figures, conferenc

    Asymptotic and Finite Frame Length Analysis of Frame Asynchronous Coded Slotted ALOHA

    Full text link
    We consider a frame-asynchronous coded slotted ALOHA (FA-CSA) system where users become active according to a Poisson random process. In contrast to standard frame-synchronous CSA (FS-CSA), users transmit a first replica of their message in the slot following their activation and other replicas uniformly at random in a number of subsequent slots. We derive the (approximate) density evolution that characterizes the asymptotic performance of FA-CSA when the frame length goes to infinity. We show that, if users can monitor the system before they start transmitting, a boundary-effect similar to that of spatially-coupled codes occurs, which greatly improves the decoding threshold as compared to FS-CSA. We also derive analytical approximations of the error floor (EF) in the finite frame length regime. We show that FA-CSA yields in general lower EF, better performance in the waterfall region, and lower average delay, as compared to FS-CSA.Comment: 5 pages, 6 figures. Updated notation, terminology, and typo

    General BER Expression for One-Dimensional Constellations

    Full text link
    A novel general ready-to-use bit-error rate (BER) expression for one-dimensional constellations is developed. The BER analysis is performed for bit patterns that form a labeling. The number of patterns for equally spaced M-PAM constellations with different BER is analyzed.Comment: To appear in the Proceedings of the IEEE Global Communications Conference (GLOBECOM) 2012. Remark 3 modifie

    A Simple Approximation for the Bit-Interleaved Coded Modulation Capacity

    Get PDF
    The generalized mutual information (GMI) is an achievable rate for bit-interleaved coded modulation (BICM) and is highly dependent on the binary labeling of the constellation. The BICM-GMI, sometimes called the BICM capacity, can be evaluated numerically. This approach, however, becomes impractical when the number of constellation points and/or the constellation dimensionality grows, or when many different labelings are considered. A simple approximation for the BICM-GMI based on the area theorem of the demapper's extrinsic information transfer (EXIT) function is proposed. Numerical results show the proposed approximation gives good estimates of the BICM-GMI for labelings with close to linear EXIT functions, which includes labelings of common interest, such as the natural binary code, binary reflected Gray code, etc. This approximation is used to optimize the binary labeling of the 32-APSK constellation defined in the DVB-S2 standard. Gains of approximately 0.15 dB are obtained

    Improving soft FEC performance for higher-order modulations via optimized bit channel mappings

    Get PDF
    Soft forward error correction with higher-order modulations is often implemented in practice via the pragmatic bit-interleaved coded modulation paradigm, where a single binary code is mapped to a nonbinary modulation. In this paper, we study the optimization of the mapping of the coded bits to the modulation bits for a polarization-multiplexed fiber-optical system without optical inline dispersion compensation. Our focus is on protograph-based low-density parity-check (LDPC) codes which allow for an efficient hardware implementation, suitable for high-speed optical communications. The optimization is applied to the AR4JA protograph family, and further extended to protograph-based spatially coupled LDPC codes assuming a windowed decoder. Full field simulations via the split-step Fourier method are used to verify the analysis. The results show performance gains of up to 0.25 dB, which translate into a possible extension of the transmission reach by roughly up to 8%, without significantly increasing the system complexity.Comment: This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-22-12-1454
    • …
    corecore