2 research outputs found

    Coexisting Surface Phases and Coherent One-Dimensional Interfaces on BaTiO<sub>3</sub>(001)

    No full text
    Coexistence of surface reconstructions is important due to the diversity in kinetic and thermodynamic processes involved. We identify the coexistence of kinetically accessible phases that are chemically identical and form coherent interfaces. Here, we establish the coexistence of two phases, <i>c</i>(2 × 2) and <i>c</i>(4 × 4), in BaTiO<sub>3</sub>(001) with atomically resolved Scanning Tunneling Microscopy (STM). First-principles thermodynamic calculations determine that TiO adunits and clusters compose the surfaces. We show that TiO diffusion results in a kinetically accessible <i>c</i>(2 × 2) phase, while TiO clustering results in a kinetically and thermodynamically stable <i>c</i>(4 × 4) phase. We explain the formation of domains based on the diffusion of TiO units. The diffusion direction determines the observed 1D coherent interfaces between <i>c</i>(2 × 2) and <i>c</i>(4 × 4) reconstructions. We propose atomic models for the <i>c</i>(2 × 2), <i>c</i>(4 × 4), and 1D interfaces

    Synergistic Oxygen Evolving Activity of a TiO<sub>2</sub>‑Rich Reconstructed SrTiO<sub>3</sub>(001) Surface

    No full text
    In addition to composition, the structure of a catalyst is another fundamental determinant of its catalytic reactivity. Recently, anomalous Ti oxide-rich surface phases of ternary oxides have been stabilized as nonstoichiometric epitaxial overlayers. These structures give rise to different modes of oxygen binding, which may lead to different oxidative chemistry. Through density functional theory investigations and electrochemical measurements, we predict and subsequently show that such a TiO<sub>2</sub> double-layer surface reconstruction enhances the oxygen evolving activity of the perovskite-type oxide SrTiO<sub>3</sub>. Our theoretical work suggests that the improved activity of the restructured TiO<sub>2</sub>(001) surface toward oxygen formation stems from (i) having two Ti sites with distinct oxidation activity and (ii) being able to form a strong O–O moiety (which reduces overbonding at Ti sites), which is a direct consequence of (iii) having a labile lattice O that is able to directly participate in the reaction. Here, we demonstrate the improvement of the catalytic performance of a well-known and well-studied oxide catalyst through more modern methods of materials processing, predicted through first-principles theoretical modeling
    corecore