1,505 research outputs found

    Precision determination of the pi-N scattering lengths and the charged pi-NN coupling constant

    Get PDF
    We critically evaluate the isovector GMO sumrule for the charged πNN\pi N N coupling constant using recent precision data from π−\pi ^-p and π−\pi^-d atoms and with careful attention to systematic errors. From the π−\pi ^-d scattering length we deduce the pion-proton scattering lengths 1/2(aπ−p+aπ−n)=(−20±6{1/2}(a_{\pi ^-p}+a_{\pi ^-n})=(-20\pm 6(statistic)±10 \pm 10 (systematic))~⋅10−4mπc−1\cdot 10^{-4}m_{\pi_c}^{-1} and 1/2(aπ−p−aπ−n)=(903±14)⋅10−4mπc−1{1/2}(a_{\pi ^-p}-a_{\pi ^-n})=(903 \pm 14)\cdot 10^{-4}m_{\pi_c}^{-1}. From this a direct evaluation gives gc2(GMO)/4π=14.20±0.07g^2_c(GMO)/4\pi =14.20\pm 0.07(statistic)±0.13\pm 0.13(systematic) or fc2/4π=0.0786±0.0008f^2_c/4\pi= 0.0786\pm 0.0008.Comment: 4 pages, 1 figure, latex and postscript; invited talk at PANIC99; to appear in Nucl. Phys. A; changed notation: g^2 and f^2 replaced by conventional g^2/4\pi and f^2/4\p

    Chiral Dynamics of Deeply Bound Pionic Atoms

    Get PDF
    We present and discuss a systematic calculation, based on two-loop chiral perturbation theory, of the pion-nuclear s-wave optical potential. A proper treatment of the explicit energy dependence of the off-shell pion self-energy together with (electromagnetic) gauge invariance of the Klein-Gordon equation turns out to be crucial. Accurate data for the binding energies and widths of the 1s and 2p levels in pionic ^{205}Pb and ^{207}Pb are well reproduced, and the notorious "missing repulsion" in the pion-nuclear s-wave optical potential is accounted for. The connection with the in-medium change of the pion decay constant is clarified.Comment: preprint ECT*-02-16, 4 pages, 3 figure

    How Precisely can we Determine the \piNN Coupling Constant from the Isovector GMO Sum Rule?

    Get PDF
    The isovector GMO sum rule for zero energy forward pion-nucleon scattering iscritically studied to obtain the charged pion-nucleon coupling constant usingthe precise negatively charged pion-proton and pion-deuteron scattering lengthsdeduced recently from pionic atom experiments. This direct determination leadsto a pseudoscalar charged pion-nucleon coupling constant of 14.23 +- 0.09(statistic) +- 0.17 (systematic). We obtain also accurate values for thepion-nucleon scattering lengths

    How precisely can we determine the pion-nucleon coupling constant from the isovector GMO sum rule?

    Full text link
    The isovector GMO sum rule for zero energy forward pion-nucleon scattering is critically studied to obtain the charged pion-nucleon coupling constant using the precise negatively charged pion-proton and pion-deuteron scattering lengths deduced recently from pionic atom experiments. This direct determination leads to a pseudoscalar charged pion-nucleon coupling constant of 14.23 +- 0.09 (statistic) +- 0.17 (systematic). We obtain also accurate values for the pion-nucleon scattering lengths.Comment: Talk given at the Eighth International Symposium on Meson-Nucleon Physics and the Structure of the Nucleon, Zuoz, Switzerland, August 15-21, 1999, 5 pages, 2 figures, file menu.cls include

    In-Place Stabilization of Waste Phosphatic Clays Using Lime Columns

    Get PDF
    This paper will present the results of a laboratory testing program and field implementation of the lime column stabilization technique to waste phosphatic clays. Results show increases in clay shear strength by 2 to 3 orders of magnitude and reduce the time of primary consolidation by 1 to 2 orders of magnitude

    Regge phenomenology of pion photoproduction off the nucleon at forward angles

    Full text link
    We present a Regge model for pion photoproduction which is basically free of parameters within the framework of the s-channel helicity amplitude. We use coupling constants of all exchanged mesons determined from empirical decay widths or from the SU(3) relations together with consistency check with existing estimates that are widely accepted in other reaction processes. Cross sections and spin polarization asymmetries at various photon energies are analyzed and results are obtained in better agreement with experimental data without referring to any fitting procedure.Comment: 19 pages, 20 figures, two column, revtex

    Meson-induced correlations of nucleons in nuclear Compton scattering

    Get PDF
    The non-resonant (seagull) contribution to the nuclear Compton amplitude at low energies is strongly influenced by nucleon correlations arising from meson exchange. We study this problem in a modified Fermi gas model, where nuclear correlation functions are obtained with the help of perturbation theory. The dependence of the mesonic seagull amplitude on the nuclear radius is investigated and the influence of a realistic nuclear density on this amplitude is dicussed. We found that different form factors appear for the static part (proportional to the enhancement constant κ\kappa ) of the mesonic seagull amplitude and for the parts, which contain the contribution from electromagnetic polarizabilities.Comment: 15 pages, Latex, epsf.sty, 9 eps figures

    Precise strength of the π\piNN coupling constant

    Get PDF
    We report here a preliminary value for the piNN coupling constant deduced from the GMO sumrule for forward piN scattering. As in our previous determination from np backward differential scattering cross sections we give a critical discussion of the analysis with careful attention not only to the statistical, but also to the systematic uncertainties. Our preliminary evaluation gives gc2g^2_c(GMO) = 13.99(24)

    Hadron attenuation in deep inelastic lepton-nucleus scattering

    Full text link
    We present a detailed theoretical investigation of hadron attenuation in deep inelastic scattering (DIS) off complex nuclei in the kinematic regime of the HERMES experiment. The analysis is carried out in the framework of a probabilistic coupled-channel transport model based on the Boltzmann-Uehling-Uhlenbeck (BUU) equation, which allows for a treatment of the final-state interactions (FSI) beyond simple absorption mechanisms. Furthermore, our event-by-event simulations account for the kinematic cuts of the experiments as well as the geometrical acceptance of the detectors. We calculate the multiplicity ratios of charged hadrons for various nuclear targets relative to deuterium as a function of the photon energy nu, the hadron energy fraction z_h=E_h/nu and the transverse momentum p_T. We also confront our model results on double-hadron attenuation with recent experimental data. Separately, we compare the attenuation of identified hadrons (pi^\pm, \pi^0, K^\pm, p and pbar) on Ne and Kr targets with the data from the HERMES Collaboration and make predictions for a Xe target. At the end we turn towards hadron attenuation on Cu nuclei at EMC energies. Our studies demonstrate that (pre-)hadronic final-state interactions play a dominant role in the kinematic regime of the HERMES experiment while our present approach overestimates the attenuation at EMC energies.Comment: 61 pages, 19 figures, version accepted for publication in Phys. Rev.

    Polaron Variational Methods In The Particle Representation Of Field Theory : II. Numerical Results For The Propagator

    Get PDF
    For the scalar Wick-Cutkosky model in the particle representation we perform a similar variational calculation for the 2-point function as was done by Feynman for the polaron problem. We employ a quadratic nonlocal trial action with a retardation function for which several ans\"atze are used. The variational parameters are determined by minimizing the variational function and in the most general case the nonlinear variational equations are solved numerically. We obtain the residue at the pole, study analytically and numerically the instability of the model at larger coupling constants and calculate the width of the dressed particle.Comment: 25 pages standard LaTeX, 9 uuencoded postscript figures embedded with psfig.st
    • …
    corecore