1,747 research outputs found
Gas Content, Size, Temperature and Velocity Effects on Cavitation Inception Internal Report No. 31
Gas content, size temperature, and velocity effects on Venturi cavity inceptio
Unusual statistics of interference effects in neutron scattering from compound nuclei
We consider interference effects between p-wave resonance scattering
amplitude and background s-wave amplitude in low-energy neutron scattering from
a heavy nucleus which goes through the compound nucleus stage. The first effect
is in the difference between the forward and backward scattering cross
sections. Because of the chaotic nature of the compound states, this effect is
a random variable with zero mean. However, a statistical consideration shows
that the probability distribution of this effect does not obey the standard
central limit theorem. That is, the probability density for the effect averaged
over n resonances does not become a Gaussian distribution with the variance
decreasing as 1/sqrt(n) (``violation'' of the theorem!). We derive the
probability distribution of the effect and the limit distribution of the
average. It is found that the width of this distribution does not decrease with
the increase of n, i.e., fluctuations are not suppressed by averaging.
Furthermore, we consider the correlation between the neutron spin and the
scattering plane and find that this effect, although much smaller, shows
fluctuations which actually increase upon averaging over many measurements.
Limits of the effects due to finite resonance widths are also considered. In
the appendix we present a simple derivation of the limit theorem for the
average of random variables with infinite variances.Comment: 15 pages, RevTeX, submitted to Phys. Rev.
NASA rotor system research aircraft flight-test data report: Helicopter and compound configuration
The flight test activities of the Rotor System Research Aircraft (RSRA), NASA 740, from June 30, 1981 to August 5, 1982 are reported. Tests were conducted in both the helicopter and compound configurations. Compound tests reconfirmed the Sikorsky flight envelope except that main rotor blade bending loads reached endurance at a speed about 10 knots lower than previously. Wing incidence changes were made from 0 to 10 deg
A Perturbative Calculation of the Electromagnetic Form Factors of the Deuteron
Making use of the effective field theory expansion recently developed by the
authors, we compute the electromagnetic form factors of the deuteron
analytically to next-to-leading order (NLO). The computation is rather simple,
and involves calculating several Feynman diagrams, using dimensional
regularization. The results agree well with data and indicate that the
expansion is converging. They do not suffer from any ambiguities arising from
off-shell versus on-shell amplitudes.Comment: 22 pages, 8 figures. Discussion of effective range theory added,
typos correcte
DNA adducts in fish following an oil spill exposure
On 12 December 1999, one third of the load of the Erika tanker, amounting to about 10,000 t crude oil flowed into sea waters close to the French Atlantic Coast. This oil contained polycyclic aromatic compounds (PAC) that are known to be genotoxic. Genotoxic effects induce DNA adducts formation, which can thus be used as pollution biomarkers. Here, we assessed the genotoxic impact of the “Erika” oil spill by DNA adducts detection in the liver of immature fishes (Solea solea) from four locations of the French Brittany coasts. Two months after the spill, a high amount of DNA adducts was found in samples from all locations, amounting to 92–290 DNA adduct per 109 nucleotides. Then total DNA adduct levels decreased to reach about 50 adducts per 109 nucleotides nine months after the spill. In vitro experiments using human cell cultures and fish liver microsomes evidence the genotoxicity of the Erika fuel. They also prove the formation of reactive species able to create DNA adducts. Furthermore, in vitro and in vivo DNA adducts fingerprints are similar, thus confirming that DNA adducts are a result of the oil spill
Revealing Nuclear Pions Using Electron Scattering
A model for the pionic components of nuclear wave functions is obtained from
light front dynamical calculations of binding energies and densities. The
pionic effects are small enough to be consistent with measured nuclear di-muon
production data and with the nucleon sea. But the pion effects are large enough
to predict substantial nuclear enhancement of the cross section for
longitudinally polarized virtual photons for the kinematics accessible at
Jefferson Laboratory.Comment: 9 pages, 4 figure
Pion Excess, Nuclear Correlations, and the Interpretation of () Spin Transfer Experiments
Conventional theories of nuclear interactions predict a net increase in the
distribution of virtual pions in nuclei relative to free nucleons. Analysis of
data from several nuclear experiments has led to claims of evidence against
such a pion excess. These conclusions are usually based on a collective theory
(RPA) of the pions, which may be inadequate. The issue is the energy dependence
of the nuclear response, which differs for theories with strong NN correlations
from the RPA predictions. In the present paper, information about the energy
dependence is extracted from sum rules, which are calculated for such a
correlated, noncollective nuclear theory. The results lead to much reduced
sensitivity of nuclear reactions to the correlations that are responsible for
the pion excess. The primary example is spin transfer, for
which the expected effects are found to be smaller than the experimental
uncertainties. The analysis has consequences for Deep Inelastic Scattering
(DIS) experiments as well.Comment: 16 pages, LaTeX, no figures, submitted to Phys. Rev.
A Light Front Treatment of the Nucleus-Implications for Deep Inelastic Scattering
A light front treatment of the nuclear wave function is developed and
applied, using the mean field approximation, to infinite nuclear matter. The
nuclear mesons are shown to carry about a third of the nuclear plus momentum,
p+; but their momentum distribution has support only at p+ =0, and the mesons
do not contribute to nuclear deep inelastic scattering. This zero mode effect
occurs because the meson fields are independent of space-time position.Comment: 11 pages, revtex, 1 figur
Determination of the pion-nucleon coupling constant and scattering lengths
We critically evaluate the isovector GMO sum rule for forward pion-nucleon
scattering using the recent precision measurements of negatively charged
pion-proton and pion-deuteron scattering lengths from pionic atoms. We deduce
the charged-pion-nucleon coupling constant, with careful attention to
systematic and statistical uncertainties. This determination gives, directly
from data a pseudoscalar coupling constant of
14.11+-0.05(statistical)+-0.19(systematic) or a pseudovector one of 0.0783(11).
This value is intermediate between that of indirect methods and the direct
determination from backward neutron-proton differential scattering cross
sections. We also use the pionic atom data to deduce the coherent symmetric and
antisymmetric sums of the negatively charged pion-proton and pion-neutron
scattering lengths with high precision. The symmetric sum gives
0.0012+-0.0002(statistical)+-0.0008 (systematic) and the antisymmetric one
0.0895+-0.0003(statistical)+-0.0013(systematic), both in units of inverse
charged pion-mass. For the need of the present analysis, we improve the
theoretical description of the pion-deuteron scattering length.Comment: 27 pages, 5 figures, submitted to Phys. Rev. C, few modifications and
clarifications, no change in substance of the pape
Vector-meson magnetic dipole moment effects in radiative tau decays
We study the possibility that the magnetic dipole moment of light charged
vector mesons could be measured from their effects in \tau^- -->
V^-\nu_{\tau}\gamma decays. We conclude that the energy spectrum and angular
distribution of photons emitted at small angles with respect to vector mesons
is sensitive the effects of the magnetic dipole moment. Model-dependent
contributions and photon radiation off other electromagnetic multipoles are
small in this region. We also compute the effects of the magnetic dipole moment
on the integrated rates and photon energy spectrum of these lepton
decays.Comment: Latex, 12 pages, 4 figures, submitted to PR
- …