14,277 research outputs found
Optical scanning tests of complex CMOS microcircuits
The new test method was based on the use of a raster-scanned optical stimulus in combination with special electrical test procedures. The raster-scanned optical stimulus was provided by an optical spot scanner, an instrument that combines a scanning optical microscope with electronic instrumentation to process and display the electric photoresponse signal induced in a device that is being tested
Electromagnetic radiation screening of microcircuits for long life applications
The utility of X-rays as a stimulus for screening high reliability semiconductor microcircuits was studied. The theory of the interaction of X-rays with semiconductor materials and devices was considered. Experimental measurements of photovoltages, photocurrents, and effects on specified parameters were made on discrete devices and on microcircuits. The test specimens included discrete devices with certain types of identified flaws and symptoms of flaws, and microcircuits exhibiting deviant electrical behavior. With a necessarily limited sample of test specimens, no useful correlation could be found between the X-ray-induced electrical response and the known or suspected presence of flaws
Research in satellite-aided crop inventory and monitoring
Automated information extraction procedures for analysis of multitemporal LANDSAT data in non-U.S. crop inventory and monitoring are reviewed. Experiments to develope and evaluate crop area estimation technologies for spring small grains, summer crops, corn, and soybeans are discussed
Investigation of relationships between linears, total and hazy areas, and petroleum production in the Williston Basin: An ERTS approach
The author has identified the following significant results. ERTS-1 imagery in a variety of formats was used to locate linear, tonal, and hazy features and to relate them to areas of hydrocarbon production in the Williston Basin of North Dakota, eastern Montana, and northern South Dakota. Derivative maps of rectilinear, curvilinear, tonal, and hazy features were made using standard laboratory techniques. Mapping of rectilinears on both bands 5 and 7 over the entire region indicated the presence of a northeast-southwest and a northwest-southeast regional trend which is indicative of the bedrock fracture pattern in the basin. Curved lines generally bound areas of unique tone, maps of tonal patterns repeat many of the boundaries seen on curvilinear maps. Tones were best analyzed on spring and fall imagery in the Williston Basin. It is postulated that hazy areas are caused by atmospheric phenomena. The ability to use ERTS imagery as an exploration tool was examined where petroleum and gas are presently produced (Bottineau Field, Nesson and Antelope anticlines, Redwing Creek, and Cedar Creek anticline). It is determined that some tonal and linear features coincide with location of present production in Redwing and Cedar Creeks. In the remaining cases, targets could not be sufficiently well defined to justify this method
Investigation of relationships between linears, tonal and hazy anomalies, and petroleum production in the Williston Basin: An ERTS approach
There are no author-identified significant results in this report
Direct combination: a new user interaction principle for mobile and ubiquitous HCI
Direct Combination (DC) is a recently introduced user interaction principle. The principle (previously applied to desktop computing) can greatly reduce the degree of search, time, and attention required to operate user interfaces. We argue that Direct Combination applies particularly aptly to mobile computing devices, given appropriate interaction techniques, examples of which are presented here. The reduction in search afforded to users can be applied to address several issues in mobile and ubiquitous user interaction including: limited feedback bandwidth; minimal attention situations; and the need for ad-hoc spontaneous interoperation and dynamic reconfiguration of multiple devices. When Direct Combination is extended and adapted to fit the demands of mobile and ubiquitous HCI, we refer to it as Ambient Combination (AC) . Direct Combination allows the user to exploit objects in the environment to narrow down the range of interactions that need be considered (by system and user). When the DC technique of pairwise or n-fold combination is applicable, it can greatly lessen the demands on users for memorisation and interface navigation. Direct Combination also appears to offers a new way of applying context-aware information. In this paper, we present Direct Combination as applied ambiently through a series of interaction scenarios, using an implemented prototype system
Squarepants in a Tree: Sum of Subtree Clustering and Hyperbolic Pants Decomposition
We provide efficient constant factor approximation algorithms for the
problems of finding a hierarchical clustering of a point set in any metric
space, minimizing the sum of minimimum spanning tree lengths within each
cluster, and in the hyperbolic or Euclidean planes, minimizing the sum of
cluster perimeters. Our algorithms for the hyperbolic and Euclidean planes can
also be used to provide a pants decomposition, that is, a set of disjoint
simple closed curves partitioning the plane minus the input points into subsets
with exactly three boundary components, with approximately minimum total
length. In the Euclidean case, these curves are squares; in the hyperbolic
case, they combine our Euclidean square pants decomposition with our tree
clustering method for general metric spaces.Comment: 22 pages, 14 figures. This version replaces the proof of what is now
Lemma 5.2, as the previous proof was erroneou
Surface Roughness Dominated Pinning Mechanism of Magnetic Vortices in Soft Ferromagnetic Films
Although pinning of domain walls in ferromagnets is ubiquitous, the absence
of an appropriate characterization tool has limited the ability to correlate
the physical and magnetic microstructures of ferromagnetic films with specific
pinning mechanisms. Here, we show that the pinning of a magnetic vortex, the
simplest possible domain structure in soft ferromagnets, is strongly correlated
with surface roughness, and we make a quantitative comparison of the pinning
energy and spatial range in films of various thickness. The results demonstrate
that thickness fluctuations on the lateral length scale of the vortex core
diameter, i.e. an effective roughness at a specific length scale, provides the
dominant pinning mechanism. We argue that this mechanism will be important in
virtually any soft ferromagnetic film.Comment: 4 figure
A late-time transition in the cosmic dark energy?
We study constraints from the latest CMB, large scale structure (2dF,
Abell/ACO, PSCz) and SN1a data on dark energy models with a sharp transition in
their equation of state, w(z). Such a transition is motivated by models like
vacuum metamorphosis where non-perturbative quantum effects are important at
late times. We allow the transition to occur at a specific redshift, z_t, to a
final negative pressure -1 < w_f < -1/3. We find that the CMB and supernovae
data, in particular, prefer a late-time transition due to the associated delay
in cosmic acceleration. The best fits (with 1 sigma errors) to all the data are
z_t = 2.0^{+2.2}_{-0.76}, \Omega_Q = 0.73^{+0.02}_{-0.04} and w_f = -1^{+0.2}.Comment: 6 Pages, 5 colour figures, MNRAS styl
The ionization structure of the Orion nebula: Infrared line observations and models
Observations of the (O III) 52 and 88 micron lines and the (N III) 57 micron line have been made at 6 positions and the (Ne III) 36 micron line at 4 positions in the Orion Nebula to probe its ionization structure. The measurements, made with a -40" diameter beam, were spaced every 45" in a line south from and including the Trapezium. The wavelength of the (Ne III) line was measured to be 36.013 + or - 0.004 micron. Electron densities and abundance ratios of N(++)/O(++) have been calculated and compared to other radio and optical observations. Detailed one component and two component (bar plus halo) spherical models were calculated for exciting stars with effective temperatures of 37 to 40,000K and log g = 4.0 and 4.5. Both the new infrared observations and the visible line measurements of oxygen and nitrogen require T sub eff approx less than 37,000K. However, the double ionized neon requires a model with T sub eff more than or equal to 39,000K, which is more consistent with that inferred from the radio flux or spectral type. These differences in T sub eff are not due to effects of dust on the stellar radiation field, but are probably due to inaccuracies in the assumed stellar spectrum. The observed N(++)/O(++) ratio is almost twice the N(+)/O(+) ratio. The best fit models give N/H = 8.4 x 10 to the -5 power, O/H = 4.0 x 10 to the -4 power, and Ne/H = 1.3 x 10 to the -4 power. Thus neon and nitrogen are approximately solar, but oxygen is half solar in abundance. From the infrared O(++) lines it is concluded that the ionization bar results from an increase in column depth rather than from a local density enhancement
- …