459 research outputs found

    Thermodynamical Consistent Modeling and Analysis of Nematic Liquid Crystal Flows

    Full text link
    The general Ericksen-Leslie system for the flow of nematic liquid crystals is reconsidered in the non-isothermal case aiming for thermodynamically consistent models. The non-isothermal model is then investigated analytically. A fairly complete dynamic theory is developed by analyzing these systems as quasilinear parabolic evolution equations in an LpLqL^p-L^q-setting. First, the existence of a unique, local strong solution is proved. It is then shown that this solution extends to a global strong solution provided the initial data are close to an equilibrium or the solution is eventually bounded in the natural norm of the underlying state space. In these cases, the solution converges exponentially to an equilibrium in the natural state manifold

    Two-phase densification of cohesive granular aggregates

    Get PDF
    When poured into a container, cohesive granular materials form low-density, open granular aggregates. If pressed upon with a ram, these aggregates densify by particle rearrangement. Here we introduce experimental evidence to the effect that particle rearrangement is a spatially heterogeneous phenomenon, which occurs in the form of a phase transformation between two configurational phases of the granular aggregate. We then show that the energy landscape associated with particle rearrangement is consistent with our interpretation of the experimental results. Besides affording insight into the physics of the granular state, our conclusions are relevant to many engineering processes and natural phenomena.Comment: 7 pages, 3 figure

    Global Weak Solutions to a General Liquid Crystals System

    Full text link
    We prove the global existence of finite energy weak solutions to the general liquid crystals system. The problem is studied in bounded domain of R3R^3 with Dirichlet boundary conditions and the whole space R3R^3

    Obesity accelerates Helicobacter felis-induced gastric carcinogenesis by enhancing immature myeloid cell trafficking and TH17 response

    Get PDF
    Objective: To investigate the role of obesity-associated inflammation and immune modulation in gastric carcinogenesis during Helicobacter-induced chronic gastric inflammation. Design: C57BL/6 male mice were infected with H felis and placed on a high-fat diet (45% calories from fat). Study animals were analysed for gastric and adipose pathology, inflammatory markers in serum, stomach and adipose tissue, and immune responses in blood, spleen, stomach and adipose tissue. Results: H felis-induced gastric carcinogenesis was accelerated in diet-induced obese mice compared with lean controls. Obesity increased bone marrow-derived immature myeloid cells in blood and gastric tissue of H felis-infected mice. Obesity also led to elevations in CD4 T cells, IL-17A, granulocyte macrophage colony-stimulating factor, phosphorylated STAT3 and prosurvival gene expression in gastric tissue of H felis-infected mice. Conversely, in adipose tissue of obese mice, H felis infection increased macrophage accumulation and expression of IL-6, C-C motif ligand 7 (CCL7) and leptin. Finally, the combination of obesity and gastric inflammation synergistically increased serum proinflammatory cytokines, including IL-6. Conclusions: Here, we have established a model to study the molecular mechanism by which obesity predisposes individuals to gastric cancer. In H felis-infected mice, obesity increased proinflammatory immune responses and accelerated gastric carcinogenesis. Interestingly, gastric inflammation augmented obesity-induced adipose inflammation and production of adipose-derived factors in obese, but not lean, mice. Our findings suggest that obesity accelerates Helicobacter-associated gastric cancer through cytokine-mediated cross-talk between inflamed gastric and adipose tissues, augmenting immune responses at both tissue sites, and thereby contributing to a protumorigenic gastric microenvironment.National Institutes of Health (U.S.) (grant 5R01CA093405-11)Columbia University Medical Center (Naomi Berrie Diabetes Center, grant P30DK063608

    Blow up criterion for compressible nematic liquid crystal flows in dimension three

    Full text link
    In this paper, we consider the short time strong solution to a simplified hydrodynamic flow modeling the compressible, nematic liquid crystal materials in dimension three. We establish a criterion for possible breakdown of such solutions at finite time in terms of the temporal integral of both the maximum norm of the deformation tensor of velocity gradient and the square of maximum norm of gradient of liquid crystal director field.Comment: 22 page

    K-ras Mutation Targeted to Gastric Tissue Progenitor Cells Results in Chronic Inflammation, an Altered Microenvironment, and Progression to Intraepithelial

    Get PDF
    Chronic infectious diseases, such as Helicobacter pylori infection, can promote cancer in a large part through induction of chronic inflammation. Oncogenic K-ras mutation in epithelial cells activates inflammatory pathways, which could compensate for a lack of infectious stimulus. Gastric histopathology and putative progenitor markers [doublecortin and calcium/calmodulin-dependent protein kinase-like 1 (Dcamkl1) and keratin 19 (K19)] in K19-K-ras-V12 (K19-kras) transgenic mice were assessed at 3, 6, 12, and 18 months of age, in comparison with Helicobacter felis–infected wild-type littermates. Inflammation was evaluated by reverse transcription–PCR of proinflammatory cytokines, and K19-kras mice were transplanted with green fluorescent protein (GFP)–labeled bone marrow. Both H. felis infection and K-ras mutation induced upregulation of proinflammatory cytokines, expansion of Dcamkl1+ cells, and progression to oxyntic atrophy, metaplasia, hyperplasia, and high-grade dysplasia. K19-kras transgenic mice uniquely displayed mucous metaplasia as early as 3 months and progressed to high-grade dysplasia and invasive intramucosal carcinoma by 20 months. In bone marrow–transplanted K19-kras mice that progressed to dysplasia, a large proportion of stromal cells were GFP+ and bone marrow–derived, but only rare GFP+ epithelial cells were observed. GFP+ bone marrow–derived cells included leukocytes and CD45− stromal cells that expressed vimentin or α smooth muscle actin and were often found surrounding clusters of Dcamkl1+ cells at the base of gastric glands. In conclusion, the expression of mutant K-ras in K19+ gastric epithelial cells can induce chronic inflammation and promote the development of dysplasia.National Institutes of Health (U.S.) (Grant NIH 5R01 CA120979-02)National Institutes of Health (U.S.) (Grant R01 DK060694)National Institutes of Health (U.S.) (Grant U01 CA143056)National Institutes of Health (U.S.) (Grant P30 DK050306)Uehara Memorial Foundatio

    Disorder-Driven Pretransitional Tweed in Martensitic Transformations

    Full text link
    Defying the conventional wisdom regarding first--order transitions, {\it solid--solid displacive transformations} are often accompanied by pronounced pretransitional phenomena. Generally, these phenomena are indicative of some mesoscopic lattice deformation that ``anticipates'' the upcoming phase transition. Among these precursive effects is the observation of the so-called ``tweed'' pattern in transmission electron microscopy in a wide variety of materials. We have investigated the tweed deformation in a two dimensional model system, and found that it arises because the compositional disorder intrinsic to any alloy conspires with the natural geometric constraints of the lattice to produce a frustrated, glassy phase. The predicted phase diagram and glassy behavior have been verified by numerical simulations, and diffraction patterns of simulated systems are found to compare well with experimental data. Analytically comparing to alternative models of strain-disorder coupling, we show that the present model best accounts for experimental observations.Comment: 43 pages in TeX, plus figures. Most figures supplied separately in uuencoded format. Three other figures available via anonymous ftp

    Controllable motions of compressible simple materials of various types

    Full text link
    It is shown that a motion is possible in every compressible homogeneous isotropic simple solid having a certain range of memory, in the presence of a constant body force field, if and only if it is homogeneous and uniformly accelerated after a certain time. In the class of solids having perfect memory, the only motion of this kind which can be smoothly initiated in a body at rest is a rigid one. For the class of solids having finite memory of duration T and initially at rest, the motions of the type considered need be homogeneous and uniformly accelerated only after time T . For those solids having fading memory, the motion must reduce to a fixed homogeneous deformation. Similar results are developed for simple fluids and anisotropic simple solids. Es wird gezeigt, daß in jedem kompressiblen, homogenen und isotropen einfachen Festkörper mit einem gewissen Erinnerungsbereich und in Gegenwart eines konstanten Massenkraftfeldes eine Bewegung dann und nur dann möglich ist, wenn sie homogen und nach einer gewissen Zeit gleichmäßig beschleunigt ist. Bei Festkörpern mit vollkommener Erinnerung ist die einzige Bewegung dieser Art, die bei einem ruhenden Körper glatt eingeleitet werden kann, eine starre. Bei Festkörpern mit begrenzter Erinnerungsdauer T , die anfangs in Ruhe waren, müssen die Bewegungen der betrachteten Art homogen und nur nach der Zeit T gleichmäßig beschleunigt sein. Für Festkörper mit schwindendem Gedächtnis reduziert sich die Bewegung auf eien feste homogene Verformung. Ähnliche Ergebnisse werden für einfache Flüssigkeiten und anisotrope einfache Festkörper entwickelt.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41721/1/707_2005_Article_BF01204714.pd
    corecore