4 research outputs found

    Nodal dynamics, not degree distributions, determine the structural controllability of complex networks

    Get PDF
    Structural controllability has been proposed as an analytical framework for making predictions regarding the control of complex networks across myriad disciplines in the physical and life sciences (Liu et al., Nature:473(7346):167-173, 2011). Although the integration of control theory and network analysis is important, we argue that the application of the structural controllability framework to most if not all real-world networks leads to the conclusion that a single control input, applied to the power dominating set (PDS), is all that is needed for structural controllability. This result is consistent with the well-known fact that controllability and its dual observability are generic properties of systems. We argue that more important than issues of structural controllability are the questions of whether a system is almost uncontrollable, whether it is almost unobservable, and whether it possesses almost pole-zero cancellations.Comment: 1 Figures, 6 page

    Information Theory, Developmental Psychology, and the Baldwin Effect

    Get PDF
    As part of the extended evolutionary synthesis, there has recently been a new emphasis on the effects of biological development on genetic inheritance and variation. The exciting new directions taken by those in the community have by a pre-history filled with related ideas that were never given a rigorous foundation or combined coherently. Part of the historical background of the extended synthesis is the work of James Mark Baldwin on his so-called “Baldwin Effect.” Many variant re-interpretations of his work obscure the original meaning of the Baldwin Effect. This paper emphasizes a new approach to the Baldwin Effect, focusing on his work in developmental psychology and how that would impact evolution. We propose a novel population genetics model of the Baldwin Effect. First, the impact of a kind of learning process motivated by motor babbling, in the developmental psychology literature, on evolution; second, that Information-theoretic phenotype reshaping speeds up evolution compared to populations without this kind of learning. The basic idea behind the model is to allow the organism to apply abstraction to his initial phenotype to situate it within one of a few different classes of phenotypes in the local neighborhood of a fitness maximum. The reshaping of the phenotype space thereby allows the organism to reach a nearby fitness maximum. By so doing, valleys in the fitness landscape are leveled out, making a rugged fitness landscape into a set of mesas and plateaus with increasing height. Using this model we can show the first sizeable speed-up for the Baldwin Effect compared to ordinary population genetics. We also introduce an information-theoretic foundation for the Baldwin Effect, which may be of independent interest

    Given a network, the PDS (large white circles) is the smallest set of nodes such that all other nodes (smaller grey circles) are downstream of them.

    No full text
    <p>Any network, with arbitrary (and possibly different) order finite-dimensional linear dynamics at each node is structurally controllable from a single driver node (black square) tied to the PDS as shown. See Proposition 2. The edges in the <i>structural control network</i> are part of a minimum spanning tree (black edges, although this choice of edges, and indeed the PDS, is not necessarily unique).</p
    corecore