154 research outputs found

    Two-dimensional analysis of horizontal and vertical pursuit in infantile nystagmus reveals quantitative deficits in accuracy and precision

    Get PDF
    Purpose: Infantile nystagmus (IN) presents with continuous, predominantly horizontal eye oscillations. It remains controversial whether those with IN have normal horizontal pursuit, while vertical pursuit has rarely been studied. We examined whether there are pursuit deficits associated with IN by investigating the effect of target direction, velocity, and amplitude. Methods: Twelve adults with idiopathic IN performed a pursuit task, a 0.4° dot moved either horizontally or vertically at 8 or 16°/s, through amplitudes of 8°, 16°, or 32°. Accuracy and precision errors were computed as bivariate probability density functions of target-relative eye velocities. Results: Eye velocity was less precise along the horizontal axis during both horizontal and vertical pursuit, reflecting the primary axis of the eye oscillation. Mean accuracy error along the target trajectory during vertical pursuit was just as impaired as during horizontal pursuit. There was a greater error in accuracy along the target trajectory for 16°/s targets than 8°/s. Finally, targets that oscillated at 2.0 Hz had a greater error in accuracy along the target trajectory than frequencies of 1.0 Hz or 0.5 Hz. When studied using the same experimental protocol, pursuit performance for typical observers was always better. Conclusions: These findings strongly support our hypothesis of severe deficits in pursuit accuracy in observers with IN for horizontally and vertically moving targets, as well as for targets that move at higher speeds or oscillate more quickly. Overall, IN pursuit impairment appears to have previously been underestimated, highlighting a need for further quantitative studies of dynamic visual function in those with IN

    Enhanced tracking system based on micro inertial measurements unit to measure sensorimotor responses in pigeons

    Get PDF
    The ability to orientate and navigate is critically important for the survival of all migratory birds and other animals. Progress in understanding the mechanisms underlying these capabilities and, in particular, the importance of a sensitivity to the Earth’s magnetic field has, thus far, been constrained by the limited number of techniques available for the analysis of often complex behavioural responses. Methods used to track the movements of animals, such as birds, have varied depending on the degree of accuracy required. Most conventional approaches involve the use of a camera for recording and then measuring an animal's head movements in response to a variety of external stimuli, such as changes in magnetic fields. However, video tracking analysis (VTA) will generally only provide a 2D tracking of head angle. Moreover, such a video analysis can only provide information about movements when the head is in view of the camera. In order to overcome these limitations, the novel invention reported here utilises a lightweight (<10g) Inertial Measurement Unit (IMU), positioned on the head of a homing pigeon, which contains a sensor with tri-axial orthogonal accelerometers, gyroscopes, and magnetometers. This highly compact (20.3×12.7×3 mm) system, can be programmed and calibrated to provide measurements of the three rotational angles (roll, pitch and yaw) simultaneously, eliminating any drift, i.e. the movement of the pigeon's head is determined by detecting and estimating the directions of motion at all angles (even those outside the defined areas of tracking). Using an existing VTA approach as a baseline for comparison, it is demonstrated IMU technology can comprehensively track a pigeon’s normal head movements with greater precision and in all 3 axes

    Neurochemical compartmentalization within the pigeon basal ganglia

    Get PDF
    The goals of this study were to use multiple informative markers to define and characterize the neurochemically distinct compartments of the pigeon basal ganglia, especially striatum and accumbens. To this end, we used antibodies against 12 different neuropeptides, calcium-binding proteins or neurotransmitter-related enzymes that are enriched in the basal ganglia. Our results clarify boundaries between previously described basal ganglia subdivisions in birds, and reveal considerable novel heterogeneity within these previously described subdivisions. Sixteen regions were identified that each displayed a unique neurochemical organization. Four compartments were identified within the dorsal striatal region. The neurochemical characteristics support previous comparisons to part of the central extended amygdala, somatomotor striatum, and associational striatum of mammals, respectively. The medialmost part of the medial striatum, however, has several unique features, including prominent pallidal-like woolly fibers and thus may be a region unique to birds. Four neurochemically distinct regions were identified within the pigeon ventral striatum: the accumbens, paratubercular striatum, ventrocaudal striatum, and the ventral area of the lateral part of the medial striatum that is located adjacent to these regions. The pigeon accumbens is neurochemically similar to the mammalian rostral accumbens. The pigeon paratubercular and ventrocaudal striatal regions are similar to the mammalian accumbens shell. The ventral portions of the medial and lateral parts of the medial striatum, which are located adjacent to accumbens shell-like areas, have neurochemical characteristics as well as previously reported limbic connections that are comparable to the accumbens core. Comparisons to neurochemically identified compartments in reptiles, mammals, and amphibians indicate that, although most of the basic compartments of the basal ganglia were highly conserved during tetrapod evolution, uniquely avian compartments may exist as well

    The effect of unilateral disruption of the centrifugal visual system on normal eye development in chicks raised under constant light conditions

    Get PDF
    The centrifugal visual system (CVS) comprises a visually driven isthmic feedback projection to the retina. While its function has remained elusive, we have previously shown that, under otherwise normal conditions, unilateral disconnection of centrifugal neurons in the chick affected eye development, inducing a reduced rate of axial elongation that resulted in a unilateral hyperopia in the eye contralateral to the lesion. Here, we further investigate the role of centrifugal neurons in ocular development in chicks reared in an abnormal visual environment, namely constant light. The baseline ocular phenotype of constant light-reared chicks (n = 8) with intact centrifugal neurons was assessed over a 3-week post-hatch time period and, subsequently, compared to chicks raised in normal diurnal lighting (n = 8). Lesions of the isthmo-optic tract or sham surgeries were performed in another seventeen chicks, all raised under constant light. Ocular phenotyping was performed over a 21-day postoperative period to assess changes in refractive state (streak retinoscopy) and ocular component dimensions (A-scan ultrasonography). A pathway-tracing paradigm was employed to quantify lesion success. Chicks raised in constant light conditions with an intact CVS developed shallower anterior chambers combined with elongated vitreous chambers relative to chicks raised in normal diurnal lighting. Seven days following surgery to disrupt centrifugal neurons, a significant positive correlation between refractive error asymmetry between the eyes and lesion success was evident, characterized by hyperopia in the eye contralateral to the lesion. By 21 days post-surgery, these contralateral eyes had become emmetropic, while ipsilateral eyes had developed relative axial hyperopia. Our results provide further support for the hypothesis that the centrifugal visual system can modulate eye development

    Quantitative characterization of smooth pursuit eye movements in school-age children using a child-friendly setup

    Get PDF
    Purpose: It could be argued that current studies investigating smooth pursuit development in children do not provide an optimal measure of smooth pursuit characteristics, given that a significant number have failed to adjust their setup and procedures to the child population. This study aimed to characterize smooth pursuit in children using child-friendly stimuli and procedures. Methods: Eye movements were recorded in 169 children (4–11 years) and 10 adults, while a customized, animated stimulus was presented moving horizontally and vertically at 68/s and 128/s. Eye movement recordings from 43 children with delayed reading, two with nystagmus, two with strabismus, and two with unsuccessful calibration were excluded from the analysis. Velocity gain, proportion of smooth pursuit, and the number and amplitude of saccades during smooth pursuit were calculated for the remaining participants. Median and quartiles were calculated for each age group and pursuit condition. ANOVA was used to investigate the effect of age on smooth pursuit parameters. Results: Differences across ages were found in velocity gain (68/s P , 0.01; 128/s P , 0.05), as well as the number (128/s P , 0.05) and amplitude of saccades (128/s P , 0.05), for horizontal smooth pursuit. Post hoc tests showed that these parameters were different between children aged 7 or younger and adults. No significant differences were found across ages in any smooth pursuit parameter for the vertical direction (P . 0.05). Conclusions: Using child-friendly methods, children over the age of 7 to 8 years demonstrated adultlike smooth pursuit. Translational Relevance: Child-friendly procedures are critical for appropriately characterizing smooth pursuit eye movements in children.Peer ReviewedPostprint (published version

    First evidence of the feasibility of gaze-contingent attention training for school children with autism

    Get PDF
    A number of authors have suggested that attention control may be a suitable target for cognitive training in children with autism spectrum disorder. This study provided the first evidence of the feasibility of such training using a battery of tasks intended to target visual attentional control in children with autism spectrum disorder within school-based settings. Twenty-seven children were recruited and randomly assigned to either training or an active control group. Of these, 19 completed the initial assessment, and 17 (9 trained and 8 control) completed all subsequent training sessions. Training of 120 min was administered per participant, spread over six sessions (on average). Compliance with the training tasks was generally high, and evidence of within-task training improvements was found. A number of untrained tasks to assess transfer of training effects were administered pre- and post-training. Changes in the trained group were assessed relative to an active control group. Following training, significant and selective changes in visual sustained attention were observed. Trend training effects were also noted on disengaging visual attention, but no convincing evidence of transfer was found to non-trained assessments of saccadic reaction time and anticipatory looking. Directions for future development and refinement of these new training techniques are discussed

    Quantitative Characterization of Smooth Pursuit Eye Movements in School-Age Children Using a Child-Friendly Setup

    Get PDF
    Purpose: It could be argued that current studies investigating smooth pursuit development in children do not provide an optimal measure of smooth pursuit characteristics, given that a significant number have failed to adjust their setup and procedures to the child population. This study aimed to characterize smooth pursuit in children using child-friendly stimuli and procedures. Methods: Eye movements were recorded in 169 children (4–11 years) and 10 adults, while a customized, animated stimulus was presented moving horizontally and vertically at 6°/s and 12°/s. Eye movement recordings from 43 children with delayed reading, two with nystagmus, two with strabismus, and two with unsuccessful calibration were excluded from the analysis. Velocity gain, proportion of smooth pursuit, and the number and amplitude of saccades during smooth pursuit were calculated for the remaining participants. Median and quartiles were calculated for each age group and pursuit condition. ANOVA was used to investigate the effect of age on smooth pursuit parameters. Results: Differences across ages were found in velocity gain (6°/s P 0.05). Conclusions: Using child-friendly methods, children over the age of 7 to 8 years demonstrated adultlike smooth pursuit. Translational Relevance: Child-friendly procedures are critical for appropriately characterizing smooth pursuit eye movements in children

    Infantile nystagmus: an optometrist's perspective

    Get PDF
    Infantile nystagmus (IN), previously known as congenital nystagmus, is an involuntary to-and-fro movement of the eyes that persists throughout life. IN is one of three types of early-onset nystagmus that begin in infancy, alongside fusion maldevelopment nystagmus syndrome and spasmus nutans syndrome. Optometrists may also encounter patients with acquired nystagmus. The features of IN overlap largely with those of fusion maldevelopment nystagmus syndrome, spasmus nutans syndrome, and acquired nystagmus, yet the management for each subtype is different. Therefore, the optometrist’s role is to accurately discern IN from other forms of nystagmus and to manage accordingly. As IN is a lifelong condition, its presence not only affects the visual function of the individual but also their quality of life, both socially and psychologically. In this report, we focus on the approaches that involve optometrists in the investigation and management of patients with IN. Management includes the prescription of optical treatments, low-vision rehabilitation, and other interventions such as encouraging the use of the null zone and referral to support groups. Other treatments available via ophthalmologists are also briefly discussed in the article

    Effect of Stimulus Type and Motion on Smooth Pursuit in Adults and Children

    Get PDF
    PURPOSE: This study presents a two-degree customized animated stimulus developed to evaluate smooth pursuit in children and investigates the effect of its predetermined characteristics (stimulus type and size) in an adult population. Then, the animated stimulus is used to evaluate the impact of different pursuit motion paradigms in children. METHODS: To study the effect of animating a stimulus, eye movement recordings were obtained from 20 young adults while the customized animated stimulus and a standard dot stimulus were presented moving horizontally at a constant velocity. To study the effect of using a larger stimulus size, eye movement recordings were obtained from 10 young adults while presenting a standard dot stimulus of different size (1° and 2°) moving horizontally at a constant velocity. Finally, eye movement recordings were obtained from 12 children while the 2° customized animated stimulus was presented after three different smooth pursuit motion paradigms. Performance parameters, including gains and number of saccades, were calculated for each stimulus condition. RESULTS: The animated stimulus produced in young adults significantly higher velocity gain (mean: 0.93; 95% CI: 0.90-0.96; P = .014), position gain (0.93; 0.85-1; P = .025), proportion of smooth pursuit (0.94; 0.91-0.96, P = .002), and fewer saccades (5.30; 3.64-6.96, P = .008) than a standard dot (velocity gain: 0.87; 0.82-0.92; position gain: 0.82; 0.72-0.92; proportion smooth pursuit: 0.87; 0.83-0.90; number of saccades: 7.75; 5.30-10.46). In contrast, changing the size of a standard dot stimulus from 1° to 2° did not have an effect on smooth pursuit in young adults (P > .05). Finally, smooth pursuit performance did not significantly differ in children for the different motion paradigms when using the animated stimulus (P > .05). CONCLUSIONS: Attention-grabbing and more dynamic stimuli, such as the developed animated stimulus, might potentially be useful for eye movement research. Finally, with such stimuli, children perform equally well irrespective of the motion paradigm used
    • …
    corecore