12 research outputs found

    Optimal Design for the Passive Control of Vibration Based on Limit Cycles

    Get PDF
    The optimal design of damping parameters for passive vibration control remains a challenge for both research and industrial applications. Here, we introduce a design methodology based on limit cycle analysis in concert with design optimization. A state-space representation is used to model the vibrational behavior converged to its limit cycle. The design approach is outlined and applied to mechanical systems undergoing periodic forces. This method is applicable to both vibration mitigation and energy harvesting, and examples of both are shown. We conclude with a summary of the results and an outlook for future developments and applications

    Natural Motion for Energy Saving in Robotic and Mechatronic Systems

    Get PDF
    Energy saving in robotic and mechatronic systems is becoming an evermore important topic in both industry and academia. One strategy to reduce the energy consumption, especially for cyclic tasks, is exploiting natural motion. We define natural motion as the system response caused by the conversion of potential elastic energy into kinetic energy. This motion can be both a forced response assisted by a motor or a free response. The application of the natural motion concepts allows for energy saving in tasks characterized by repetitive or cyclic motion. This review paper proposes a classification of several approaches to natural motion, starting from the compliant elements and the actuators needed for its implementation. Then several approaches to natural motion are discussed based on the trajectory followed by the system, providing useful information to the researchers dealing with natural motion

    Analytical Sensitivity Analysis of Dynamic Problems with Direct Differentiation of Generalized-<i>α</i> Time Integration

    No full text
    In this paper, the direct differentiation of generalized-α time integration is derived, equations are introduced and results are shown. Although generalized-α time integration has found usage, the derivation and the resulting equations for the analytical sensitivity analysis via direct differentiation are missing. Thus, here, the sensitivity equations of generalized-α time integration via direct differentiation are provided. Results with generalized-α are compared with Newmark-β time integration and their sensitivities with numerical sensitivities via forward finite differencing in terms of accuracy and performance. An example is shown for each linear structural dynamics and flexible multibody dynamics

    Optimal In-Operation Redesign of Mechanical Systems Considering Vibrations—A New Methodology Based on Frequency-Band Constraint Formulation and Efficient Sensitivity Analysis

    No full text
    The vibrational behavior of components in mechanical systems like drives and robots can become critical under changes in the system properties or loading in operation. Such undesired vibration can lead to detrimental conditions including excess wear, fatigue, discomfort, and acoustic emissions. Systems are designed to avoid certain frequencies to avoid such problems, but system parameters can change during operation due damage, wear, or change in loading. An example is the change in system properties or operation state that then activates resonance frequencies in our system. Therefore, this work has the goal of modifying the modal behavior of a system to avoid vibrational problems. Methods of design optimization are applied to find a new optimum design for this altered condition. Here, this is limited to the addition of mass in order to move the resonance frequency out of critical ranges. This though requires a new formulation of the optimization problem. We propose a new constraint formulation to avoid frequency ranges. To increase efficiency, a reduced analytical sensitivity analysis is introduced. This methodology is demonstrated on two test cases: a two-mass oscillator followed by a test case of higher complexity which is a gear housing considering over 15,000 design variables. The results show that the optimization solution gives the position and amount of mass added, which is a discrete solution that is practically implementable

    Multiresolution Topology Optimization of Large-Deformation Path-Generation Compliant Mechanisms with Stress Constraints

    No full text
    Topology optimization is a powerful numerical tool in the synthesis of lightweight structures and compliant mechanisms. Compliant mechanisms present challenges for topology optimization, as they typically exhibit large displacements and rotations. Path-generation mechanisms are a class of mechanisms that are designed to follow an exact path. The characteristics of compliant mechanisms therefore exclude the validity of linear finite-element analysis to ensure the proper modeling of deformation and stresses. As stresses can exceed the limit when neglected, stress constraints are needed in the synthesis of compliant mechanisms. Both nonlinear finite-element analysis as well as the consideration of stress constraints significantly increase computational cost of topology optimization. Multiresolution topology optimization, which employs different levels of discretization for the finite-element analysis and the representation of the material distribution, allows an important reduction of computational effort. A multiresolution topology optimization methodology is proposed integrating stress constraints based on nonlinear finite-element analysis for path-generation mechanisms. Two objective formulations are used to motivate and validate this methodology: maximum-displacement mechanisms and path-generation mechanisms. The formulation of the stress constraints and their sensitivities within nonlinear finite-element analysis and multiresolution topology optimization are explained. We introduce two academic benchmark examples to demonstrate the results for each of the objective formulations. To show the practical, large-scale application of this method, results for the compliant mechanism structure of a droop-nose morphing wing concept are shown

    A Review on Energy-Saving Optimization Methods for Robotic and Automatic Systems

    No full text
    In the last decades, increasing energy prices and growing environmental awareness have driven engineers and scientists to find new solutions for reducing energy consumption in manufacturing. Although many processes of a high energy consumption (e.g., chemical, heating, etc.) are considered to have reached high levels of efficiency, this is not the case for many other industrial manufacturing activities. Indeed, this is the case for robotic and automatic systems, for which, in the past, the minimization of energy demand was not considered a design objective. The proper design and operation of industrial robots and automation systems represent a great opportunity for reducing energy consumption in the industry, for example, by the substitution with more efficient systems and the energy optimization of operation. This review paper classifies and analyses several methodologies and technologies that have been developed with the aim of providing a reference of existing methods, techniques and technologies for enhancing the energy performance of industrial robotic and mechatronic systems. Hardware and software methods, including several subcategories, are considered and compared, and emerging ideas and possible future perspectives are discussed

    Modeling, Design and Optimization of Flexible Mechanical Systems

    No full text
    Performance, efficiency and economy drive the design of mechanical systems and structures and has led lightweight engineering design to prominence [...

    Minimization of the Energy Consumption in Industrial Robots through Regenerative Drives and Optimally Designed Compliant Elements

    No full text
    This paper describes a method for reducing the energy consumption of industrial robots and electrically actuated mechanisms performing cyclic tasks. The energy required by the system is reduced by outfitting it with additional devices able to store and recuperate energy, namely, compliant elements coupled in parallel with axles and regenerative motor drives. Starting from the electromechanical model of the modified system moving following a predefined periodic path, the relationship between the electrical energy and the stiffness and preload of the compliant elements is analyzed. The conditions for the compliant elements to be optimal are analytically derived. It is demonstrated that under these conditions the compliant elements are always beneficial for reducing the energy consumption. The effectiveness of the design method is verified by applying it to two test cases: a five-bar mechanism and a SCARA robot. The numerical validations show that the system energy consumption can be reduced up to the 77.8% while performing a high-speed, standard, not-optimized trajectory

    Surrogate modeling in design optimization of structures with discontinuous responses: A new approach for ill-posed problems in crashworthiness design

    No full text
    Advances in computational technology have resulted in the dramatic reduction of computational time for crashworthiness analysis, hence enabling its structural design optimization. Surrogate modeling has been shown to further reduce computational effort as well as to smooth noisy responses. Crashworthiness optimization problems are, though, ill posed as they include nonlinear, noncontinuous and noisy responses. This violates the Hadamard conditions for well-posed problems and therefore the applicability of gradient-based algorithms is limited. Here, discontinuities in the responses with respect to the design variables will be handled that result in large changes in the system functions with only small changes in the design variables using a novel surrogate modeling technique. The applicability of typical global surrogate models is limited when critical discontinuities are present. An efficient method has been developed here to identify the number of discontinuities and their position in the design domain. Previous works assume a said number of discontinuities; here though, the number of discontinuities is not given a priori. The discontinuities are identified by examining the relative difference in the response value of samples in immediate proximity of each other. Samples in the same continuous subdomain are clustered and a support vector machine for classification is exploited to locate discontinuities. Local approximations are then used for the continuous subspaces between the discontinuities. Lastly, a surrogate-based design optimization is carried out. Starting with a two-bar truss, demonstrating a snap-through discontinuity, this method is shown to account for such discontinuities. This is then integrated into an optimization framework. Further academic example, namely a six-bar truss is modeled using the open-source framework Kratos Multiphysics and then optimized, showing the applicability of the method to problems with multiple discontinuities. Finally, a crash-absorbing tube is optimized that is impacted with an angle resulting in a noncontinuous design space: desired axial crushing and undesirable global buckling. After summarizing the results, advantages and possible limitations are discussed

    Increased Metabotropic Glutamate Receptor Subtype 5 Availability in Human Brain After One Night Without Sleep

    Full text link
    BACKGROUND: Sleep deprivation (wake therapy) provides rapid clinical relief in many patients with major depressive disorder (MDD). Changes in glutamatergic neurotransmission may contribute to the antidepressant response, yet the exact underlying mechanisms are unknown. Metabotropic glutamate receptors of subtype 5 (mGluR5) are importantly involved in modulating glutamatergic neurotransmission and neuronal plasticity. The density of these receptors is reduced in the brain of patients with MDD, particularly in brain structures involved in regulating wakefulness and sleep. We hypothesized that prolonged wakefulness would increase mGluR5 availability in human brain. METHODS: Metabotropic glutamate receptor subtype 5 binding was quantified with positron emission tomography in 22 young healthy men who completed two experimental blocks separated by 1 week. Two positron emission tomography examinations were conducted in randomized, crossover fashion with the highly selective radioligand, (11)C-ABP688, once after 9 hours (sleep control) and once after 33 hours (sleep deprivation) of controlled wakefulness. (11)C-ABP688 uptake was quantified in 13 volumes of interest with high mGluR5 expression and presumed involvement in sleep-wake regulation. RESULTS: Sleep deprivation induced a global increase in mGluR5 binding when compared with sleep control (p<.006). In anterior cingulate cortex, insula, medial temporal lobe, parahippocampal gyrus, striatum, and amygdala, this increase correlated significantly with the sleep deprivation-induced increase in subjective sleepiness. CONCLUSIONS: This molecular imaging study demonstrates that cerebral functional mGluR5 availability is increased after a single night without sleep. Given that mGluR5 density is reduced in MDD, further research is warranted to examine whether this mechanism is involved in the potent antidepressant effect of wake therapy
    corecore