1,699 research outputs found
Elicited bid functions in (a)symmetric first-price auctions
We report on a series of experiments that examine bidding behavior in first-price sealed bid auctions with symmetric and asymmetric bidders. To study the extent of strategic behavior, we use an experimental design that elicits bidders' complete bid functions in each round (auction) of the experiment. In the aggregate, behavior is consistent with the basic equilibrium predictions for risk neutral or homogenous risk averse bidders (extent of bid shading, average seller's revenues and deviations from equilibrium). However, when we look at the extent of best reply behavior and the shape of bid functions, we find that individual behavior is not in line with the received equilibrium models, although it exhibits strategic sophistication.This research benefited from financial support from the European Commission through a TMR-ENDEAR Network Grant (FMRX-CT98-0238) and a Marie Curie Fellowship (Sadrieh: HPMF-CT-199-00312) and from the Deutsche Forschungsgemeinschaft through
SFB 303
Ultra fast imaging NMR method for measuring fast transport processes in thin porous media
Measuring moisture distributions during fast transport processes in thin porous media is a challenging task. In this paper, Ultra Fast Imaging (UFI) NMR is proposed as a valuable measurement technique for investigating moisture uptake in porous media by achieving a temporal resolution of 10 ms and spatial resolution between 14.5 and 18 μm. This paper gives a detailed explanation about the methodology and the interpretation of the signal intensity. It is shown that there exist specific T 1- and T 2- relaxation time conditions for performing UFI experiments with signal-to-noise ratios that are sufficiently high. In most cases, a contrast agent is required to optimize these relaxation times and achieve the optimal measurement conditions. In the first part of this paper, both CuSO4 and Clariscan are discussed as possible contrast agents. Furthermore, it is shown that the signal intensity can be linked to the moisture content for water based liquids. The second part of this paper covers penetration experiments on porous PVDF membranes. These measurements show that the technique is able to measure moisture profiles during fast capillary penetration and allows to extract moisture front positions. Those front positions follow a linear time behavior in PVDF membranes. Lastly the NMR-measurements showed similar results when compared to scanning absorptometry (ASA). </p
C in intense femtosecond laser pulses: nonlinear dipole response and ionization
We study the interaction of strong femtosecond laser pulses with the C
molecule employing time-dependent density functional theory with the ionic
background treated in a jellium approximation. The laser intensities considered
are below the threshold of strong fragmentation but too high for perturbative
treatments such as linear response. The nonlinear response of the model to
excitations by short pulses of frequencies up to 45eV is presented and analyzed
with the help of Kohn-Sham orbital resolved dipole spectra. In femtosecond
laser pulses of 800nm wavelength ionization is found to occur multiphoton-like
rather than via excitation of a ``giant'' resonance.Comment: 14 pages, including 1 table, 5 figure
Lattice supersymmetry, superfields and renormalization
We study Euclidean lattice formulations of non-gauge supersymmetric models
with up to four supercharges in various dimensions. We formulate the conditions
under which the interacting lattice theory can exactly preserve one or more
nilpotent anticommuting supersymmetries. We introduce a superfield formalism,
which allows the enumeration of all possible lattice supersymmetry invariants.
We use it to discuss the formulation of Q-exact lattice actions and their
renormalization in a general manner. In some examples, one exact supersymmetry
guarantees finiteness of the continuum limit of the lattice theory. As a
consequence, we show that the desired quantum continuum limit is obtained
without fine tuning for these models. Finally, we discuss the implications and
possible further applications of our results to the study of gauge and
non-gauge models.Comment: 44 pages, 1 figur
Increase of the mean inner Coulomb potential in Au clusters induced by surface tension and its implication for electron scattering
Electron holography in a transmission electron microscope was applied to
measure the phase shift induced by Au clusters as a function of the cluster
size. Large phase shifts Df observed for small Au clusters cannot be described
by the well-known equation Df=C_E V_0 t (C_E: interaction constant, V_0: mean
inner Coulomb potential (MIP) of bulk gold, t: cluster thickness). The rapid
increase of the Au MIP with decreasing cluster size derived from Df, can be
explained by the compressive strain of surface atoms in the cluster
Dynamics of cross linking fronts in alkyd coatings
The dynamics of the curing process of alkyd coatings is an important aspect for coating performance. The formation of cross links in an alkyd coating film has been followed in time using a microimaging nuclear magnetic resonance setup, having a spatial resolution of 5 µm perpendicular to the film. During this cross-linking process a front has been observed inside the coating film. The position of this front varied with the square root of time. With the help of a simple reaction model, we have proven that this dynamics results from the fact that the curing rate is limited by the oxygen flux into the coating. This model can also explain, the differences in curing rates observed for various coatings. © 2005 American Institute of Physics
Dynamical ionization ignition of clusters in intense and short laser pulses
The electron dynamics of rare gas clusters in laser fields is investigated
quantum mechanically by means of time-dependent density functional theory. The
mechanism of early inner and outer ionization is revealed. The formation of an
electron wave packet inside the cluster shortly after the first removal of a
small amount of electron density is observed. By collisions with the cluster
boundary the wave packet oscillation is driven into resonance with the laser
field, hence leading to higher absorption of laser energy. Inner ionization is
increased because the electric field of the bouncing electron wave packet adds
up constructively to the laser field. The fastest electrons in the wave packet
escape from the cluster as a whole so that outer ionization is increased as
well.Comment: 8 pages, revtex4, PDF-file with high resolution figures is available
from http://mitarbeiter.mbi-berlin.de/bauer/publist.html, publication no. 24.
Accepted for publication in Phys. Rev.
Radiative Decay of a Long-Lived Particle and Big-Bang Nucleosynthesis
The effects of radiatively decaying, long-lived particles on big-bang
nucleosynthesis (BBN) are discussed. If high-energy photons are emitted after
BBN, they may change the abundances of the light elements through
photodissociation processes, which may result in a significant discrepancy
between the BBN theory and observation. We calculate the abundances of the
light elements, including the effects of photodissociation induced by a
radiatively decaying particle, but neglecting the hadronic branching ratio.
Using these calculated abundances, we derive a constraint on such particles by
comparing our theoretical results with observations. Taking into account the
recent controversies regarding the observations of the light-element
abundances, we derive constraints for various combinations of the measurements.
We also discuss several models which predict such radiatively decaying
particles, and we derive constraints on such models.Comment: Published version in Phys. Rev. D. Typos in figure captions correcte
Caribbean Corals in Crisis: Record Thermal Stress, Bleaching, and Mortality in 2005
BACKGROUND The rising temperature of the world's oceans has become a major threat to coral reefs globally as the severity and frequency of mass coral bleaching and mortality events increase. In 2005, high ocean temperatures in the tropical Atlantic and Caribbean resulted in the most severe bleaching event ever recorded in the basin. METHODOLOGY/PRINCIPAL FINDINGS Satellite-based tools provided warnings for coral reef managers and scientists, guiding both the timing and location of researchers' field observations as anomalously warm conditions developed and spread across the greater Caribbean region from June to October 2005. Field surveys of bleaching and mortality exceeded prior efforts in detail and extent, and provided a new standard for documenting the effects of bleaching and for testing nowcast and forecast products. Collaborators from 22 countries undertook the most comprehensive documentation of basin-scale bleaching to date and found that over 80% of corals bleached and over 40% died at many sites. The most severe bleaching coincided with waters nearest a western Atlantic warm pool that was centered off the northern end of the Lesser Antilles. CONCLUSIONS/SIGNIFICANCE Thermal stress during the 2005 event exceeded any observed from the Caribbean in the prior 20 years, and regionally-averaged temperatures were the warmest in over 150 years. Comparison of satellite data against field surveys demonstrated a significant predictive relationship between accumulated heat stress (measured using NOAA Coral Reef Watch's Degree Heating Weeks) and bleaching intensity. This severe, widespread bleaching and mortality will undoubtedly have long-term consequences for reef ecosystems and suggests a troubled future for tropical marine ecosystems under a warming climate.This work was partially supported by salaries from the NOAA Coral Reef Conservation Program to the NOAA Coral Reef Conservation Program authors. NOAA provided funding to Caribbean ReefCheck investigators to undertake surveys of bleaching and mortality. Otherwise, no funding from outside authors' institutions was necessary for the undertaking of this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
- …