701 research outputs found

    Marshall University Music Department Presents the Marshall University Symphony Orchestra Family Concert

    Get PDF
    https://mds.marshall.edu/music_perf/1611/thumbnail.jp

    An Examination of the Causal Relationship Between Tourism and Economic Growth in Ghana from 1987 to 2018

    Get PDF
    The growth of every nation is its ability to improve every sector of the economy that provides better outcomes through revenue mobilization and investment. With the Ghana’s attention shifted to tourism, it is imperative to identify how tourism could trigger growth in the country. Thus, the study sought to examine the causal relationship between tourism and economic growth of Ghana and its related challenges. The study adopted a mixed method approach in the collection and analysis of data. Both secondary and primary data were used in the analysis of the study. In analyzing the quantitative study, data on tourism and GDP from 1987 to 2018 were used. The study adopted the Johansen Cointegration test and the instrumental variable estimation to identify the causal relationship among the variables. The outcome of the study from the Johansen and Co-integration test instrumental variable showed that there is a unidirectional causal relationship between tourism receipt and GDP growth both in the short run and the long run and a positive significant effect of tourism on economic growth of Ghana. The result showed that government has been the major contributor to the sector. Also, the most challenging issue curtailing the sector was found to be the issue of the COVID 19 pandemic. As such, the study recommended that ensuring public-private partnership could improve the sector to ensure growth in the economy. Further extensive research is required to understand the effects of tourism on host communities. Keywords: Tourism, Gross Domestic Product (GDP), Economic Growth, Ghana, Tourism industry, Climate Change. DOI: 10.7176/JESD/11-20-04 Publication date:October 31st 202

    Regulation of mitochondrial permeability transition pore by PINK1

    Get PDF
    Background: Loss-of-function mutations in PTEN-induced kinase 1 (PINK1) have been linked to familial Parkinson’s disease, but the underlying pathogenic mechanism remains unclear. We previously reported that loss of PINK1 impairs mitochondrial respiratory activity in mouse brains. Results: In this study, we investigate how loss of PINK1 impairs mitochondrial respiration using cultured primary fibroblasts and neurons. We found that intact mitochondria in PINK1−/− cells recapitulate the respiratory defect in isolated mitochondria from PINK1−/− mouse brains, suggesting that these PINK1−/− cells are a valid experimental system to study the underlying mechanisms. Enzymatic activities of the electron transport system complexes are normal in PINK1−/− cells, but mitochondrial transmembrane potential is reduced. Interestingly, the opening of the mitochondrial permeability transition pore (mPTP) is increased in PINK1−/− cells, and this genotypic difference between PINK1−/− and control cells is eliminated by agonists or inhibitors of the mPTP. Furthermore, inhibition of mPTP opening rescues the defects in transmembrane potential and respiration in PINK1−/− cells. Consistent with our earlier findings in mouse brains, mitochondrial morphology is similar between PINK1−/− and wild-type cells, indicating that the observed mitochondrial functional defects are not due to morphological changes. Following FCCP treatment, calcium increases in the cytosol are higher in PINK1−/− compared to wild-type cells, suggesting that intra-mitochondrial calcium concentration is higher in the absence of PINK1. Conclusions: Our findings show that loss of PINK1 causes selective increases in mPTP opening and mitochondrial calcium, and that the excessive mPTP opening may underlie the mitochondrial functional defects observed in PINK1−/− cells

    A neuroskeletal atlas: Spatial mapping and contextualization of axon subtypes innervating the long bones of C3H and B6 mice

    Get PDF
    Nerves in bone play well-established roles in pain and vasoregulation and have been associated with progression of skeletal disorders, including osteoporosis, fracture, arthritis, and tumor metastasis. However, isolation of the region-specific mechanisms underlying these relationships is limited by our lack of quantitative methods for neuroskeletal analysis and precise maps of skeletal innervation. To overcome these limitations, we developed an optimized workflow for imaging and quantitative analysis of axons in and around the bone, including validation of Baf53b-Cre in concert with R26R-tdTomato (Ai9) as a robust pan-neuronal reporter system for use in musculoskeletal tissues. In addition, we created comprehensive maps of sympathetic adrenergic and sensory peptidergic axons within and around the full length of the femur and tibia in two strains of mice (B6 and C3H). In the periosteum, these maps were related to the surrounding musculature, including entheses and myotendinous attachments to bone. Three distinct patterns of periosteal innervation (termed type I, II, III) were defined at sites that are important for bone pain, bone repair, and skeletal homeostasis. For the first time, our results establish a gradient of bone marrow axon density that increases from proximal to distal along the length of the tibia and define key regions of interest for neuroskeletal studies. Lastly, this information was related to major nerve branches and local maps of specialized mechanoreceptors. This detailed mapping and contextualization of the axonal subtypes innervating the skeleton is intended to serve as a guide during the design, implementation, and interpretation of future neuroskeletal studies and was compiled as a resource for the field as part of the NIH SPARC consortium. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).

    Neuroskeletal effects of chronic bioelectric nerve stimulation in health and diabetes

    Get PDF
    Background/Aims: Bioelectric nerve stimulation (eStim) is an emerging clinical paradigm that can promote nerve regeneration after trauma, including within the context of diabetes. However, its ability to prevent the onset of diabetic peripheral neuropathy (DPN) has not yet been evaluated. Beyond the nerve itself, DPN has emerged as a potential contributor to sarcopenia and bone disease; thus, we hypothesized that eStim could serve as a strategy to simultaneously promote neural and musculoskeletal health in diabetes. Methods: To address this question, an eStim paradigm pre-optimized to promote nerve regeneration was applied to the sciatic nerve, which directly innervates the tibia and lower limb, for 8 weeks in control and streptozotocin-induced type 1 diabetic (T1D) rats. Metabolic, gait, nerve and bone assessments were used to evaluate the progression of diabetes and the effect of sciatic nerve eStim on neuropathy and musculoskeletal disease, while also considering the effects of cuff placement and chronic eStim in otherwise healthy animals. Results: Rats with T1D exhibited increased mechanical allodynia in the hindpaw, reduced muscle mass, decreased cortical and cancellous bone volume fraction (BVF), reduced cortical bone tissue mineral density (TMD), and decreased bone marrow adiposity. Type 1 diabetes also had an independent effect on gait. Placement of the cuff electrode alone resulted in altered gait patterns and unilateral reductions in tibia length, cortical BVF, and bone marrow adiposity. Alterations in gait patterns were restored by eStim and tibial lengthening was favored unilaterally; however, eStim did not prevent T1D-induced changes in muscle, bone, marrow adiposity or mechanical sensitivity. Beyond this, chronic eStim resulted in an independent, bilateral reduction in cortical TMD. Conclusion: Overall, these results provide new insight into the pathogenesis of diabetic neuroskeletal disease and its regulation by eStim. Though eStim did not prevent neural or musculoskeletal complications in T1D, our results demonstrate that clinical applications of peripheral neuromodulation ought to consider the impact of device placement and eStim on long-term skeletal health in both healthy individuals and those with metabolic disease. This includes monitoring for compounded bone loss to prevent unintended consequences including decreased bone mineral density and increased fracture risk

    Knockout of TSC2 in Nav1.8+ neurons predisposes to the onset of normal weight obesity

    Get PDF
    OBJECTIVE: Obesity and nutrient oversupply increase mammalian target of rapamycin (mTOR) signaling in multiple cell types and organs, contributing to the onset of insulin resistance and complications of metabolic disease. However, it remains unclear when and where mTOR activation mediates these effects, limiting options for therapeutic intervention. The objective of this study was to isolate the role of constitutive mTOR activation in Nav1.8-expressing peripheral neurons in the onset of diet-induced obesity, bone loss, and metabolic disease. METHODS: In humans, loss of function mutations in tuberous sclerosis complex 2 (TSC2) lead to maximal constitutive activation of mTOR. To mirror this in mice, we bred Nav1.8-Cre with TSC2 RESULTS: By lineage tracing, Nav1.8-Cre targeted peripheral sensory neurons, a subpopulation of postganglionic sympathetics, and several regions of the brain. Conditional knockout of TSC2 in Nav1.8-expressing neurons (Nav1.8-TSC2 CONCLUSIONS: Knockout of TSC2 in Nav1.8+ neurons increases itch- and anxiety-like behaviors and substantially modifies fat storage and metabolic responses to HFD. Though this prevents HFD-induced weight gain, it masks depot-specific fat expansion and persistent detrimental effects on metabolic health and peripheral organs such as bone, mimicking the \u27normal weight obesity\u27 phenotype that is of growing concern. This supports a mechanism by which increased neuronal mTOR signaling can predispose to altered adipose tissue distribution, adipose tissue expansion, impaired peripheral metabolism, and detrimental changes to skeletal health with HFD - despite resistance to weight gain

    The virtual peripheral nerve academy: education for the identification and treatment of peripheral nerve disorders

    Get PDF
    Millions of people around the globe suffer peripheral nerve injuries caused by trauma and medical disorders. However, medical school curricula are profoundly deficient in peripheral nerve education. This lack of knowledge within the healthcare profession may cause inadequate patient care. We developed the Virtual Peripheral Nerve Academy (VPNA) as a reusable virtual learning environment to provide medical students with detailed education on the peripheral nervous system (PNS). Students are introduced to the PNS through virtual 3D rendering of the human body, wherein they visualize individual nerves through dissection and observe normal motor and sensory function associated with each nerve. PNS structures that are absent from traditional texts are included in this visualization, ranging from the innervation of joints to the normal anatomic variation required for differential diagnosis of pain after an injury. Detailed modules on peripheral nerve disorders allow students to observe pathophysiological mechanisms, associated symptomatology, and appropriate treatments. Students are briefed on a patient clinical case, then interact with a patient avatar to learn the appropriate diagnostics, including physical exam maneuvers and electrodiagnostic testing. Interactive modules on peripheral nerve surgeries detail surgical techniques. The VPNA data and analytics dashboards allow medical students and course instructors to assess skill improvement and identify specific learning needs. The built-in learner management system and availability on both computer-based and virtual reality platforms facilitate integration into any existing medical school curricula. Ultimately, this immersive technology enables every medical student to learn about the peripheral nervous system and gain competency in treating real-life nerve pathologies

    MicroRNA profiling reveals marker of motor neuron disease in ALS models

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder marked by the loss of motor neurons (MNs) in the brain and spinal cord, leading to fatally debilitating weakness. Because this disease predominantly affects MNs, we aimed to characterize the distinct expression profile of that cell type to elucidate underlying disease mechanisms and to identify novel targets that inform on MN health during ALS disease time course. microRNAs (miRNAs) are short, noncoding RNAs that can shape the expression profile of a cell and thus often exhibit cell-type-enriched expression. To determine MN-enriched miRNA expression, we used Cre recombinase-dependent miRNA tagging and affinity purification in mice. By defining thein vivomiRNA expression of MNs, all neurons, astrocytes, and microglia, we then focused on MN-enriched miRNAs via a comparative analysis and found that they may functionally distinguish MNs postnatally from other spinal neurons. Characterizing the levels of the MN-enriched miRNAs in CSF harvested from ALS models of MN disease demonstrated that one miRNA (miR-218) tracked with MN loss and was responsive to an ALS therapy in rodent models. Therefore, we have used cellular expression profiling tools to define the distinct miRNA expression of MNs, which is likely to enrich future studies of MN disease. This approach enabled the development of a novel, drug-responsive marker of MN disease in ALS rodents.SIGNIFICANCE STATEMENTAmyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons (MNs) in the brain and spinal cord are selectively lost. To develop tools to aid in our understanding of the distinct expression profiles of MNs and, ultimately, to monitor MN disease progression, we identified small regulatory microRNAs (miRNAs) that were highly enriched or exclusive in MNs. The signal for one of these MN-enriched miRNAs is detectable in spinal tap biofluid from an ALS rat model, where its levels change as disease progresses, suggesting that it may be a clinically useful marker of disease status. Furthermore, rats treated with ALS therapy have restored expression of this MN RNA marker, making it an MN-specific and drug-responsive marker for ALS rodents.</jats:p
    corecore