23 research outputs found

    Enhanced characteristics of genetically modified switchgrass (Panicum virgatum L.) for high biofuel production

    Get PDF
    Background Lignocellulosic biomass is one of the most promising renewable and clean energy resources to reduce greenhouse gas emissions and dependence on fossil fuels. However, the resistance to accessibility of sugars embedded in plant cell walls (so-called recalcitrance) is a major barrier to economically viable cellulosic ethanol production. A recent report from the US National Academy of Sciences indicated that, “absent technological breakthroughs”, it was unlikely that the US would meet the congressionally mandated renewable fuel standard of 35 billion gallons of ethanol-equivalent biofuels plus 1 billion gallons of biodiesel by 2022. We here describe the properties of switchgrass (Panicum virgatum) biomass that has been genetically engineered to increase the cellulosic ethanol yield by more than 2-fold. Results We have increased the cellulosic ethanol yield from switchgrass by 2.6-fold through overexpression of the transcription factor PvMYB4. This strategy reduces carbon deposition into lignin and phenolic fermentation inhibitors while maintaining the availability of potentially fermentable soluble sugars and pectic polysaccharides. Detailed biomass characterization analyses revealed that the levels and nature of phenolic acids embedded in the cell-wall, the lignin content and polymer size, lignin internal linkage levels, linkages between lignin and xylans/pectins, and levels of wall-bound fucose are all altered in PvMYB4-OX lines. Genetically engineered PvMYB4-OX switchgrass therefore provides a novel system for further understanding cell wall recalcitrance. Conclusions Our results have demonstrated that overexpression of PvMYB4, a general transcriptional repressor of the phenylpropanoid/lignin biosynthesis pathway, can lead to very high yield ethanol production through dramatic reduction of recalcitrance. MYB4-OX switchgrass is an excellent model system for understanding recalcitrance, and provides new germplasm for developing switchgrass cultivars as biomass feedstocks for biofuel production. Keywords: Switchgrass; Bioenergy; Biofuel; Feedstock; Cellulosic ethanol; PvMYB4; Transcription factor; Cell wall; Recalcitrance; Lignin; Hemicellulose; Pecti

    Hydrocarbon Renewable and Synthetic Diesel Fuel Blendstocks: Composition and Properties

    No full text
    We examined the chemical composition and properties of several diesel fuels and blendstocks derived from Fischer–Tropsch (FT) synthesis, hydroisomerization of lipids, and fermentation of sugar via the terpenoid metabolic pathway. Comprehensive two-dimensional gas chromatographic analysis with nonpolar and polar columns, <sup>13</sup>C NMR, GC-MS, and elemental analysis were used to assess fuel chemistry. Performance properties included density, heat of combustion, cetane number, and cloud point, as well as other properties. The fuels consisted almost entirely of normal and iso-paraffins. Three samples contained residual oxygen below 0.1 mass %. All of the renewable and synthetic diesel fuels have significantly lower density than is typical for a petroleum-derived diesel fuel. As a result, they have slightly higher net heat of combustion on a mass basis (2%–3% higher), but lower heat of combustion on a volume basis (3%–7% lower). Two critical diesel performance properties, cetane number and cloud point, were correlated with iso-paraffin content and chain length. The results confirm that properties of hydroisomerized fats and oils, as well as FT diesel, can be tuned by increasing the degree of isomerization to lower cloud point which also lowers the cetane number. In spite of this trade-off between cloud point, and cetane number, the cetane numbers were still over 70 for fuels with cloud points as low as −27 °C. The terpenoid biofuel exhibited a cloud point below −70 °C and a cetane number of 58

    Unraveling the <sup>13</sup>C NMR Chemical Shifts in Single-Walled Carbon Nanotubes: Dependence on Diameter and Electronic Structure

    No full text
    The atomic specificity afforded by nuclear magnetic resonance (NMR) spectroscopy could enable detailed mechanistic information about single-walled carbon nanotube (SWCNT) functionalization as well as the noncovalent molecular interactions that dictate ground-state charge transfer and separation by electronic structure and diameter. However, to date, the polydispersity present in as-synthesized SWCNT populations has obscured the dependence of the SWCNT <sup>13</sup>C chemical shift on intrinsic parameters such as diameter and electronic structure, meaning that no information is gleaned for specific SWCNTs with unique chiral indices. In this article, we utilize a combination of <sup>13</sup>C labeling and density gradient ultracentrifugation (DGU) to produce an array of <sup>13</sup>C-labeled SWCNT populations with varying diameter, electronic structure, and chiral angle. We find that the SWCNT isotropic <sup>13</sup>C chemical shift decreases systematically with increasing diameter for semiconducting SWCNTs, in agreement with recent theoretical predictions that have heretofore gone unaddressed. Furthermore, we find that the <sup>13</sup>C chemical shifts for small diameter metallic and semiconducting SWCNTs differ significantly, and that the full-width of the isotropic peak for metallic SWCNTs is much larger than that of semiconducting nanotubes, irrespective of diameter

    Application of a Pyroprobe–Deuterium NMR System: Deuterium Tracing and Mechanistic Study of Upgrading Process for Lignin Model Compounds

    No full text
    In this study, a pyroprobe–deuterium (<sup>2</sup>H) NMR system has been used to identify isotopomer products formed during the deuteration and ring opening of lignin model compounds. Several common model compounds for lignin and its upgraded products, including guaiacol, syringol, toluene, <i>p</i>-xylene, phenol, catechol, cyclohexane, methylcyclohexane, and methylcyclopentane, have been examined for selective ring opening. Similar pathways for upgrading of toluene and <i>p</i>-xylene has been found, which will undergo hydrogenation, methyl group elimination, and ring opening process, and benzene, cyclohexane, and methylcyclohexane have been found as major intermediates before ring opening. Very interestingly, the <sup>2</sup>H NMR analysis for the deuterium-traced ring opening of catechol on Ir/γ-Al<sub>2</sub>O<sub>3</sub> is almost identical to the ring opening process for phenol. The ring opening processes for guaiacol and syringol appeared to be very complicated, as expected. Benzene, phenol, toluene, cyclohexane, and methylcyclohexane have been determined to be the major products
    corecore