229 research outputs found

    Relativistic Binary Pulsars with Black-Hole Companions

    Full text link
    Binaries containing a stellar-mass black hole and a recycled radio pulsar have so far eluded detection. We present a focused investigation of the formation and evolution of these systems in the Galactic disk, highlighting the factors that limit their numbers and the reasons why they may be extremely rare. We surmise that the birthrate of black-hole/recycled-pulsar binaries in the Galactic disk is probably no higher than ~10^{-7}/yr, and may be much less. Simple arguments regarding common-envelope evolution suggest that these binaries should have orbital periods less than 10 hr and an average lifetime of <~10^8 yr before coalescence due to the emission of gravitational radiation. We expect that fewer than ~10 of these compact, relativistic binaries currently reside in the Galactic disk, less than 0.1--1% of the number of double neutron stars. The discovery of two or more black-hole/recycled-pulsar binaries using current radio telescopes would tightly constrain certain ideas regarding the evolution of massive stars, dynamical mass transfer, and black-hole formation.Comment: 10 pages, 6 figures, accepted by ApJ, minor change

    Formation of Short-Period Binary Pulsars in Globular Clusters

    Get PDF
    We present a new dynamical scenario for the formation of short-period binary millisecond pulsars in globular clusters. Our work is motivated by the recent observations of 20 radio pulsars in 47 Tuc. In a dense cluster such as 47 Tuc, most neutron stars acquire binary companions through exchange interactions with primordial binaries. The resulting systems have semimajor axes in the range \~0.1-1 AU and neutron star companion masses ~1-3 Msun. For many of these systems we find that, when the companion evolves off the main sequence and fills its Roche lobe, the subsequent mass transfer is dynamically unstable. This leads to a common envelope phase and the formation of short-period neutron star - white dwarf binaries. For a significant fraction of these binaries, the decay of the orbit due to gravitational radiation will be followed by a period of stable mass transfer driven by a combination of gravitational radiation and tidal heating of the companion. The properties of the resulting short-period binaries match well those of observed binary pulsars in 47 Tuc.Comment: To appear in ApJ Letters, slightly abbreviated version with only minor change

    Formation of Compact Binaries in Globular Clusters

    Get PDF
    We report here on two complementary population synthesis studies which relate directly to the formation and evolution of neutron star binaries in globular clusters. In the first, we compute the probability of retaining neutron stars in globular clusters, and quantitatively confirm the idea that the retention fraction for neutron stars born in binary systems is greatly enhanced over those born in isolated stars. However, the retention fraction may well be insufficient to explain the current population of neutron star binaries. In the second study, we follow a large population of primordial binaries and neutron stars throughout the lifetime of a globular cluster whose properties may be similar to 47 Tuc. We directly compute all 3-body interactions among binary systems, neutron stars, and isolated field stars throughout the history of the cluster. The evolution of certain types of neutron star binaries is followed up to the current epoch. The numbers of close, recycled, binary radio pulsars are evaluated and compared with the results of radio observations.Comment: 14 pages; to appear in Evolution of Binary and Multiple Star Systems, a Meeting in Celebration of Peter Eggleton's 60th Birthday, Bormio, Italy, ASP Conference Series, eds. P. Podsiadlowski et a

    Binaries with Compact Components: Theoretical and Observational Challenges

    Full text link
    We report on recent progress in our theoretical understanding of X-ray binaries, which has largely been driven by new observations, and illustrate the interplay between theory and observations considering as examples intermediate-mass X-ray binaries, irradiation-driven evolution, ultraluminous X-ray sources and neutron stars with low-velocity kicks.Comment: 4 pages, 2 figures, Proc. of La Paz Meeting, IAUC 194: "Compact Binaries in the Galaxy and Beyond

    New Constraints on Quantum Gravity from X-ray and Gamma-Ray Observations

    Get PDF
    One aspect of the quantum nature of spacetime is its "foaminess" at very small scales. Many models for spacetime foam are defined by the accumulation power α\alpha, which parameterizes the rate at which Planck-scale spatial uncertainties (and thephase shifts they produce) may accumulate over large path-lengths. Here α\alpha is defined by theexpression for the path-length fluctuations, δℓ\delta \ell, of a source at distance ℓ\ell, wherein δℓ≃ℓ1−αℓPα\delta \ell \simeq \ell^{1 - \alpha} \ell_P^{\alpha}, with ℓP\ell_P being the Planck length. We reassess previous proposals to use astronomical observations ofdistant quasars and AGN to test models of spacetime foam. We show explicitly how wavefront distortions on small scales cause the image intensity to decay to the point where distant objects become undetectable when the path-length fluctuations become comparable to the wavelength of the radiation. We use X-ray observations from {\em Chandra} to set the constraint α≳0.58\alpha \gtrsim 0.58, which rules out the random walk model (with α=1/2\alpha = 1/2). Much firmer constraints canbe set utilizing detections of quasars at GeV energies with {\em Fermi}, and at TeV energies with ground-based Cherenkovtelescopes: α≳0.67\alpha \gtrsim 0.67 and α≳0.72\alpha \gtrsim 0.72, respectively. These limits on α\alpha seem to rule out α=2/3\alpha = 2/3, the model of some physical interest.Comment: 11 pages, 9 figures, ApJ, in pres

    Incorporation of Genetic Pathway Information into Analysis of Multivariate Gene Expression Data

    Get PDF
    Abstract: Multivariate microarray gene expression data are commonly collected to study the genomic responses under ordered conditions such as over increasing/decreasing dose levels or over time during biological processes. One important question from such multivariate gene expression experiments is to identify genes that show different expression patterns over treatment dosages or over time and pathways that are perturbed during a given biological process. In this paper, we develop a hidden Markov random field model for multivariate expression data in order to identify genes and subnetworks that are related to biological processes, where the dependency of the differential expression patterns of genes on the networks are modeled by a Markov random field. Simulation studies indicated that the method is quite effective in identifying genes and the modified subnetworks and has higher sensitivity than the commonly used procedures that do not use the pathway information, with similar observed false discovery rates. We applied the proposed methods for analysis of a microarray time course gene expression study of TrkA- and TrkB-transfected neuroblastoma cell lines and identified genes and subnetworks on MAPK, focal adhesion and prion disease pathways that may explain cell differentiation in TrkA-transfected cell lines

    Identification of a novel locus on 2q for autosomal dominant high-grade myopia.

    Get PDF
    PURPOSE. Myopia, or nearsightedness, is a visual disorder of high and growing prevalence in the United States and in other countries. Pathologic high myopia, or myopia of ≤-6.00 D, predisposes individuals to retinal detachment, macular degeneration, cataracts, and glaucoma. Autosomal dominant (AD) nonsyndromic high-grade myopia has been mapped to loci on 18p11.31, 12q21-q23, 17q21-q23, and 7q36. This is the report of significant linkage to a novel locus on the long arm of chromosome 2 in a large, multigenerational family with AD high-grade myopia. METHODS. The family contains 31 participating members (14 affected). The average spherical refractive error for affected individuals was -14.46 D (range, -7.25 to -27.00). Before a genome screening was undertaken, linkage to intragenic or flanking markers for the myopic genetic syndromes of Stickler syndrome types I, II, and III; Marfan syndrome; and juvenile glaucoma were ruled out. In addition, no linkage was found to the known AD high-grade myopia loci listed above. A full genome screen of the family was performed with 382 microsatellite markers with an average intermarker distance of 10 cM. SimWalk2 software was used for multipoint linkage analysis based on an AD model with a penetrance of 90% and a disease allele frequency of 0.01. RESULTS. Fine-point mapping with an additional nine custommade and five commercial markers yielded a maximum two-point lod score of 5.67 at marker D2S2348. Results of multipoint analysis indicate that the 1-unit support intervals for this new locus spans approximately 9.1 cM from (238.7 to 247.8 cM) on the chromosome 2 genetic map at q37.1. CONCLUSIONS. A novel locus for AD high-grade myopia has been determined, providing further evidence of genetic heterogeneity for this disorder
    • …
    corecore