3 research outputs found

    A Formylglycine-Peptide for the Site-Directed Identification of Phosphotyrosine-Mimetic Fragments

    Get PDF
    Discovery of protein-binding fragments for precisely defined binding sites is an unmet challenge to date. Herein, formylglycine is investigated as a molecular probe for the sensitive detection of fragments binding to a spatially defined protein site . Formylglycine peptide 3 was derived from a phosphotyrosine-containing peptide substrate of protein tyrosine phosphatase PTP1B by replacing the phosphorylated amino acid with the reactive electrophile. Fragment ligation with formylglycine occurred in situ in aqueous physiological buffer. Structures and kinetics were validated by NMR spectroscopy. Screening and hit validation revealed fluorinated and non-fluorinated hit fragments being able to replace the native phosphotyrosine residue. The formylglycine probe identified low-affinity fragments with high spatial resolution as substantiated by molecular modelling. The best fragment hit, 4-amino-phenyl-acetic acid, was converted into a cellularly active, nanomolar inhibitor of the protein tyrosine phosphatase SHP2

    A Formylglycine-Peptide for the Site-Directed Identification of Phosphotyrosine-Mimetic Fragments

    No full text
    Discovery of protein-binding fragments for precisely defined binding sites is an unmet challenge so far. Here, we investigate formylglycine as a molecular probe for the sensitive detection of fragments binding to a spatially defined protein site. Formylglycine peptide 3 was derived from a phosphotyrosine-containing peptide substrate of protein tyrosine phosphatase PTP1B by replacing the phosphorylated amino acid with the reactive electrophile. Fragment ligation with formylglycine occured in aqueous physiological buffer, structures and kinetics were validated by NMR spectroscopy. Screening and hit validation revealed fluorinated and non-fluorinated hit fragments being able to replace the native phosphotyrosine residue. The formylglycine probe identified low-affinity fragments with high spatial resolution as substantiated by molecular modelling. The best fragment hit, 4-amino-phenyl-acetic acid, was converted into a cellularly active, nanomolar inhibitor of the protein tyrosine phosphatase SHP2

    The transcription factor STAT5 catalyzes Mannich ligation reactions yielding inhibitors of leukemic cell proliferation

    Get PDF
    The oncogene STAT5 is involved in cancer cell proliferation. Here, the authors use STAT5 protein to assemble its own small molecule inhibitors via Mannich ligation (three-component-reactions) and show that the resultant ligands can inhibit the proliferation of cancer cells in a mouse model
    corecore