5 research outputs found

    Accelerated evidence synthesis in orthopaedics—the roles of natural language processing, expert annotation and large language models

    Get PDF
    peer reviewedIn an era of electronical medical records, rapidly expanding publication rates of medical knowledge, and large-scale registries, orthopaedics is in a dire need of innovative approaches to facilitate the adoption of the latest knowledge in clinical practice. While machine learning (ML) has been heralded as one solution to many research tasks hampered by previous technological limitations [12], there is an increasing need to direct our attention towards subdomains of ML that are convenient for the extraction of meaningful clinical information stored in medical records. We believe natural language processing (NLP) to be one such domain of ML, with an immense future potential to catalyse rate-limiting steps in orthopaedic research

    A practical guide to the implementation of AI in orthopaedic research - part 1: opportunities in clinical application and overcoming existing challenges.

    Get PDF
    peer reviewedArtificial intelligence (AI) has the potential to transform medical research by improving disease diagnosis, clinical decision-making, and outcome prediction. Despite the rapid adoption of AI and machine learning (ML) in other domains and industry, deployment in medical research and clinical practice poses several challenges due to the inherent characteristics and barriers of the healthcare sector. Therefore, researchers aiming to perform AI-intensive studies require a fundamental understanding of the key concepts, biases, and clinical safety concerns associated with the use of AI. Through the analysis of large, multimodal datasets, AI has the potential to revolutionize orthopaedic research, with new insights regarding the optimal diagnosis and management of patients affected musculoskeletal injury and disease. The article is the first in a series introducing fundamental concepts and best practices to guide healthcare professionals and researcher interested in performing AI-intensive orthopaedic research studies. The vast potential of AI in orthopaedics is illustrated through examples involving disease- or injury-specific outcome prediction, medical image analysis, clinical decision support systems and digital twin technology. Furthermore, it is essential to address the role of human involvement in training unbiased, generalizable AI models, their explainability in high-risk clinical settings and the implementation of expert oversight and clinical safety measures for failure. In conclusion, the opportunities and challenges of AI in medicine are presented to ensure the safe and ethical deployment of AI models for orthopaedic research and clinical application. Level of evidence IV

    Delayed multiligament PCL reconstruction is associated with a higher prevalence of intraarticular injury and may influence treatment

    No full text
    Abstract Background The aim of this study was to investigate differences in concomitant injury patterns and their treatment in patients undergoing early (≤ 12 weeks) and delayed (> 12 weeks) primary multiligament posterior cruciate ligament (PCL) reconstruction (PCL-R). Methods This study was a retrospective chart review of patients undergoing primary multiligament PCL-R at a single institution between 2008 and 2020. Multiligament PCL-R was defined as PCL-R and concurrent surgical treatment of one or more additional knee ligament(s). Exclusion criteria included isolated PCL-R, PCL repair, and missing data for any variable. Patients were dichotomized into early (≤ 12 weeks) and delayed (> 12 weeks) PCL-R groups based on the time elapsed between injury and surgery. Between-group comparison of variables were conducted with the Chi-square, Fisher’s exact, and independent samples t-tests. Results A total of 148 patients were eligible for analysis, with 57 (38.5%) patients in the early and 91 (61.1%) patients in the delayed multiligament PCL-R groups. Concomitant LCL/PLC reconstruction (LCL-R/PLC-R) was performed in 55 (60%) of delayed multiligament PCL-Rs and 23 (40%) of early PCL-Rs (p = 0.02). Despite similar rates of meniscus injury, concomitant meniscus surgery was significantly more prevalent in the early (n = 25, 44%) versus delayed (n = 19, 21%) multiligament PCL-R group (p = 0.003), with a significantly greater proportion of medial meniscus surgeries performed in the early (n = 16, 28%) compared to delayed (n = 13, 14%) PCL-R group (p = 0.04). The prevalence of knee cartilage injury was significantly different between the early (n = 12, 24%) and delayed (n = 41, 46%) multiligament PCL-R groups (p = 0.01), with more frequent involvement of the lateral (n = 17, 19% vs. n = 3, 5%, respectively; p = 0.04) and medial (n = 31, 34% vs. n = 6, 11%, respectively; p = 0.005) femoral condyles in the delayed compared to the early PCL-R group. Conclusions Given higher rates of chondral pathology and medial meniscus surgery seen in delayed multiligament PCL-R, early management of PCL-based multiligament knee injury is recommended to restore knee stability and potentially prevent the development of further intraarticular injury. Level of evidence Level III

    A practical guide to the implementation of AI in orthopaedic research – part 1: opportunities in clinical application and overcoming existing challenges

    No full text
    Abstract Artificial intelligence (AI) has the potential to transform medical research by improving disease diagnosis, clinical decision‐making, and outcome prediction. Despite the rapid adoption of AI and machine learning (ML) in other domains and industry, deployment in medical research and clinical practice poses several challenges due to the inherent characteristics and barriers of the healthcare sector. Therefore, researchers aiming to perform AI‐intensive studies require a fundamental understanding of the key concepts, biases, and clinical safety concerns associated with the use of AI. Through the analysis of large, multimodal datasets, AI has the potential to revolutionize orthopaedic research, with new insights regarding the optimal diagnosis and management of patients affected musculoskeletal injury and disease. The article is the first in a series introducing fundamental concepts and best practices to guide healthcare professionals and researcher interested in performing AI‐intensive orthopaedic research studies. The vast potential of AI in orthopaedics is illustrated through examples involving disease‐ or injury‐specific outcome prediction, medical image analysis, clinical decision support systems and digital twin technology. Furthermore, it is essential to address the role of human involvement in training unbiased, generalizable AI models, their explainability in high‐risk clinical settings and the implementation of expert oversight and clinical safety measures for failure. In conclusion, the opportunities and challenges of AI in medicine are presented to ensure the safe and ethical deployment of AI models for orthopaedic research and clinical application. Level of evidence I
    corecore