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Abstract 

Artificial intelligence (AI) has the potential to transform medical research by improving disease diagnosis, clinical deci‑
sion-making, and outcome prediction. Despite the rapid adoption of AI and machine learning (ML) in other domains 
and industry, deployment in medical research and clinical practice poses several challenges due to the inherent 
characteristics and barriers of the healthcare sector. Therefore, researchers aiming to perform AI-intensive studies 
require a fundamental understanding of the key concepts, biases, and clinical safety concerns associated with the use 
of AI. Through the analysis of large, multimodal datasets, AI has the potential to revolutionize orthopaedic research, 
with new insights regarding the optimal diagnosis and management of patients affected musculoskeletal injury 
and disease. The article is the first in a series introducing fundamental concepts and best practices to guide healthcare 
professionals and researcher interested in performing AI-intensive orthopaedic research studies. The vast potential 
of AI in orthopaedics is illustrated through examples involving disease- or injury-specific outcome prediction, medical 
image analysis, clinical decision support systems and digital twin technology. Furthermore, it is essential to address 
the role of human involvement in training unbiased, generalizable AI models, their explainability in high-risk clinical 
settings and the implementation of expert oversight and clinical safety measures for failure. In conclusion, the oppor‑
tunities and challenges of AI in medicine are presented to ensure the safe and ethical deployment of AI models 
for orthopaedic research and clinical application.

Level of evidence IV

Keywords  Artificial intelligence, AI, Machine learning, ML, Large language models, Ethics, Explainability, Decision 
support systems, Digital twins, Provenance, Generalizability, Learning series, Orthopaedics, Research methods

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of
Experimental Orthopaedics

*Correspondence:
Bálint Zsidai
balint.zsidai@gu.se
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-5697-6577
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40634-023-00683-z&domain=pdf


Page 2 of 9Zsidai et al. Journal of Experimental Orthopaedics          (2023) 10:117 

Introduction
Artificial intelligence (AI) is set to transform the land-
scape of medical research with innovative approaches to 
improve disease detection, clinical decision-making, and 
outcome prediction. The majority of medical research 
conducted throughout 20th and early twenty-first cen-
turies relied on well-established statistical methods for 
data analysis. However, increasingly sophisticated appli-
cations in engineering, business, and industrial sectors 
have shown the rapid technological advancement and 
maturity of AI, with a growing interest for implementa-
tion in medical research, and the healthcare sector [5, 
37]. According to a conceptual framework developed by 
Autor and Levy the nature of work-related tasks can be 
classified as “routine” or “non-routine” and “cognitive” or 
“manual” [3]. Application of the same framework to tasks 
performed in clinical medicine and medical research can 
help a range of stakeholders to frame the transformative 
impact of digitalization and automation with AI-inten-
sive technology in terms of the type of task performed 
(Table 1). As an example, preoperative planning for com-
plex knee ligament surgery is a routinely performed cog-
nitive task, which relies on the interpretation of physical 
examination findings, the results of diagnostic imaging, 
and choosing the operative approaches and techniques 
that are most suitable for the individual anatomy and 
lifestyle demands of the patient. This scenario is likely 
to benefit from the application of AI systems to facili-
tate steps involved in preoperative planning based on a 
set of patient- and surgery-related parameters. While the 

opportunities to harness the potential of AI in medicine 
are countless, the healthcare environment possesses sev-
eral inherent characteristics and barriers to the adoption 
of AI for research, and clinical use. To ensure the effec-
tive and safe implementation of AI in medical research, 
proficiency with key concepts and terms related to AI-
driven innovation, potential sources of bias and clinical 
safety are essential [12, 31]. The aim of this article is to 
introduce the opportunities and challenges in AI-inten-
sive medical research to the orthopaedic research com-
munity, and to familiarize the reader with key terms and 
concepts illustrating current barriers to ethical and reli-
able implementation (Fig.  1). Additionally, the current 
article outlines a roadmap for subsequent sections of 
this learning series on the adaptation of AI to orthopae-
dic research. The current article is the first of a series of 
texts aimed at providing readers with the tools and best-
practices to develop well-functioning AI  systems with 
applications in orthopaedics, and focuses on the impor-
tance of ethical considerations, trustworthiness and the 
quality of AI-intensive research. A comprehensive tech-
nical introduction of AI to orthopaedic researchers will 
be provided in the forthcoming article.

How can medical research benefit 
from the implementation of AI systems?
In recent years, the growing availability of healthcare 
data and the increasing maturity of AI as a technologi-
cal tool initiated a gradual transformation of the medical 
research landscape. Patient registries containing granular 

Table 1  Examples of the transformative impact of AI-intensive applications across tasks performed in clinical medicine and medical 
research

Adapted from Autor and Levy et al. [3]

Task category Routine
(Repeatable and easy-to-define tasks)

Non-routine
(Complex and difficult-to-define tasks)

Manual
(Opportunities for automatization with robotics and com‑
puter vision)

• Monitoring of physiological parameters 
such as heart rate, blood pressure, respi‑
ration and body temperature
• Timely and accurate administration 
of medication to patients
• Disinfection and sterilization of medical 
equipment and facilities
• Inpatient registration and management 
of insurance information

• Accurate and precise procedural skills for per‑
forming surgical interventions, such as incisions, 
sutures, and handling soft tissue or bone
• Guidance of patients with physical therapy 
exercises
• The operation of diagnostic imaging instru‑
ments, such as X-rays, computerized tomog‑
raphy, and magnetic resonance imaging 
equipment
• Transportation of patients within a medical 
facility

Cognitive
(Opportunities for automatization using machine learn‑
ing and natural language processing)

• Charting and note-taking of patient 
history and physical examination
• Pre- and intraoperative surgical plan‑
ning
• Individualized disease risk prediction 
and prognosis
• Interpretation of clinical findings, lab 
results, and diagnostic imaging to guide 
patient management

• Synthesis of clinical practice guidelines based 
on the current state of evidence
• Writing scientific research articles
• Communication among and between vari‑
ous stakeholders, such as patients, insurance 
providers, and healthcare professionals (patient 
education, counseling)
• Intuitive clinical and surgical decision-making



Page 3 of 9Zsidai et al. Journal of Experimental Orthopaedics          (2023) 10:117 	

information about the demographics and therapeutic 
interventions of numerous patient populations present 
new avenues for research in the age of big data. Elec-
tronic medical records permit the storage and traceabil-
ity of data collected over the entire duration of medical 
treatment for patients with different medical conditions, 
including patient history, physical examination results, 
diagnostic images, interventions and outcomes over time.

Artificial intelligence has the potential to revolutionize 
medical research by enabling rapid and accurate analy-
sis of vast amounts of data, containing demographic, 
genetic, clinical, surgical, and rehabilitation-specific 
information or a combination of these from thousands 
of patients, in pursuit of patterns associated with spe-
cific diseases or conditions. Furthermore, many AI 
systems possess the advantage of the ability to detect 
patterns, trends and connections that may not be easily 
recognized by humans, potentially leading to new clinical 
insights and breakthroughs in disease prevention, diag-
nostics and treatment. Analysis of large datasets, often 
with multimodal data content (in terms of the source 
and type of medical data), would be tedious and inef-
ficient with the statistical methods currently employed 
in medical research [22]. Another benefit is that the 
automation of disease modeling, prediction, and diag-
nosis can potentially be performed online, with systems 
directly connected to relevant data sources and streams. 

Interconnectivity would enable the implementation of 
early warning signals to prompt further investigation and 
action by healthcare professionals when AI-intensive sys-
tems malfunction.

A general overview of AI applications in medicine
Applications of AI can be useful in a broad range of 
research scenarios with far-reaching potential for clini-
cal utility. The aim of this section is to provide the reader 
with a broad overview of areas with vast potential in 
orthopaedics using existing examples from AI-intensive 
medical research.

Prediction of disease‑ or condition‑specific outcomes
The continuous growth in the availability of high-qual-
ity medical data presents new avenues in the analysis 
of information derived from the results of clinical trials 
and national patient registries [2, 18]. One of the pri-
mary objectives of orthopaedic research is the primary 
and secondary prevention of musculoskeletal injuries 
and disease, and to identify operative or non-operative 
interventions that result in superior short- and long-term 
patient outcomes when disease and injury are already 
present. Machine learning (ML), which constitutes a 
subcategory of AI presents new opportunities in injury 
prevention and management through the identification 
of factors that predict a desired or undesired outcome 

Fig. 1  Challenges for the implementation of AI in orthopaedic research and clinical practice
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[25]. As an example, ML-driven approaches may present 
new avenues for the prediction of reinjury risk in patients 
with anterior cruciate ligament reconstruction (ACL-
R) given the availability of sufficient high-quality data. 
Such approaches need to account for the complexities of 
orthopaedic injuries by considering patient demograph-
ics, injury patterns, surgical factors and postoperative 
variables, including the quality and duration of reha-
bilitation before returning to preinjury activity levels. 
With expanding large-scale and multimodal orthopaedic 
datasets, the configurations of predictive variables and 
clinically important outcomes are unlimited, with vast 
benefits to both patients and healthcare professionals 
[47].

While the clinical implementation of AI-driven pre-
dictive algorithms is still in its nascency, their potential 
is demonstrated by several use cases in the current lit-
erature. One notable example is a clinical calculator for 
ACL revision risk prediction, developed with ML mod-
els applied to data from the Norwegian Knee Ligament 
Registry [27, 28]. While this project began to explore 
the application of a large volume of nationally collected 
patient data to improve injury risk management in ortho-
paedic sports medicine, additional studies are needed to 
determine the viability of registry data for the design of 
impactful predictive models harnessed in the everyday 
clinical setting [26].

Medical image analysis
Image analysis is perhaps the most well-known applica-
tion of AI in medicine. The ability of ML algorithms to 
perform classification and pattern recognition tasks 
when trained on radiographic images led to the proposal 
of numerous useful applications across fields, such as 
histopathology, dermatology, cardiology, ophthalmology, 
and radiology. Promising applications of AI and imag-
ing technologies in these fields include the detection and 
grading of prostate cancer based on digitalized prostate 
biopsy slides [44], automated classification of benign and 
malignant skin lesions with dermatoscopic imaging [9], 
enhanced cardiovascular disease detection using electro-
cardiography [42], deep-learning enhanced detection of 
diabetic retinopathy and related diseases based on reti-
nal images [45], and automated screening of chest radio-
graphs for COVID-19 [36]. While the diagnostic ability 
of these systems is commendable, they currently show 
potential in augmenting expert clinical experience and 
decision-making, rather than altogether replacing the 
human component of diagnostic imaging.

In orthopaedics, AI-based image analysis applications 
have primarily made an impact on diagnostics, surgical 
planning, and implant design in traumatology, arthro-
plasty, and spine surgery. While similar approaches are 

currently underutilized in sports medicine, momen-
tum is increasing in imaging applications for soft-tissue 
injury detection. A recent study demonstrated excellent 
diagnostic performance of an ACL tear detection ML 
algorithm trained on approximately 20,000 magnetic 
resonance images (MRI), with similar success after exter-
nal validation on patient groups from two different coun-
tries [46]. Similarly, recent studies highlight the potential 
of automated meniscus tear detection, and rotator cuff 
segmentation using MRI data [16, 30]. Such studies dem-
onstrate far reaching implications for the diagnosis of 
sports medicine injuries, but pathways for adoption into 
the everyday clinical workflow remain to be established. 
However, with rapid advances in areas like computer 
vision, surgical navigation, and video-analysis, the range 
of possibilities in orthopaedic sports medicine is only 
likely to expand.

Decision support systems
The broad categories and types of data and ML models 
have led to advances in the implementation of multi-
modal AI systems [2]. Despite the widespread use of tra-
ditional rules-based decision support tools in the daily 
medical practice, AI-driven decision support systems 
promise to push the frontiers of evidence-based diagno-
sis, treatment, and clinical workflow. The overall aim of 
such systems is to improve the quality of care, individu-
alize treatment, enhance patient outcomes, and simulta-
neously reduce complication and error rates in patient 
management. In orthopaedic trauma, there are a grow-
ing number of reports on the development of ML models 
for the detection and classification of fractures. However, 
only a small subset of the same studies evaluate the exter-
nal validity of fracture detection tools, which hampers 
eventual adoption in the clinical setting [34]. Future stud-
ies should focus on improvement and assessment of the 
reliability of diagnostic, treatment-related, and prognos-
tic models in the fields of orthopaedic trauma [34], spine 
surgery [29], sports medicine [38], and arthroplasty [7]. 
Advances are likely to result in the clinical application 
of integrated and robust AI-intensive decision support 
tools, with the potential to complement human expertise 
depending on the clinical context. It is noteworthy that 
the collaboration between humans and AI systems leads 
to superior performance compared with human experts 
and AI systems alone [6, 17, 40]. Future studies should 
aim to assess the influence of expertise level in orthopae-
dics (trainees, residents, fellows, experts) on the benefit 
of AI-assisted decision-making.

Digital twin technology
Currently, evaluation of the efficiency and efficacy of 
medical interventions relies on time-consuming clinical 
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trials, registry studies, and small-scale clinical investiga-
tions. While the results of clinical trials are considered 
the gold-standard of evidence synthesis, the clinical ben-
efit of certain medical interventions may vary among 
individuals in a population. The digital twin is a con-
cept adopted from engineering, and consists of a virtual 
representation of a real-world physical entity, such as 
an object, a system, or a patient [8]. The integration of 
high-quality multimodal data to design AI-driven digital 
twin models may enable real-time musculoskeletal injury 
prediction, assessment of the benefit of an orthopaedic 
intervention specific to an individual patient, simulation 
of surgical procedures, and evaluation of orthopaedic 
implant properties under various biomechanical condi-
tions [2, 19]. As a proposed example, integration of vir-
tual models of ACL-injured knees generated based on 
multimodal data from medical images, biomechanical 
tissue analyses, wearable sensors, and demographic infor-
mation specific to individual patients may enable surgical 
planning and prognostics for orthopaedic interventions. 
Thus, “computational treatment” of a personalized knee 
model will provide information regarding the beneficial 
or harmful effects of the various treatment choices avail-
able in the real world. Additionally, digital twin technol-
ogy can lead to new possibilities in the development of 
realistic arthroscopic knee surgery simulation training 

[33]. In the future, digital twins may facilitate individu-
alized treatment across medicine and orthopaedics 
through real-time digital modeling of therapeutic inter-
vention outcomes.

Appraisal of quality and safety in medical AI 
research
The European AI Act, established in 2022, proposes a 
risk-based approach to the regulation of AI systems, and 
characterizes medical applications to be of high-risk [20]. 
Accordingly, the requirements proposed by the same 
European legal framework for safe implementation of 
high-risk AI systems include: 1) the use of high-quality 
datasets for training, testing, validation, and verification 
2) thorough documentation of development to ensure 
traceability and auditability, 3) promotion of transpar-
ency and access to information by users, 4) measures 
allowing human oversight, 5) Accuracy, robustness, and 
adequate data security measures [20]. It is necessary to 
familiarize readers with several fundamental concepts 
for AI-intensive research projects to live up to these pro-
posed criteria (Table 2).

In the context of AI, provenance refers to the ori-
gins and history of a particular dataset or model. Prov-
enance comprises information about how the data was 
collected, who collected it, where it was collected, and 

Table 2  Definition of key terms for quality and safety in medical AI research

Term Definition

Multimodal In terms of health data, multimodality refers to the many distinct sources of data used by an AI system, such as electronic 
health records, medical imaging, wearable sensors, patient reported outcome measures, and others

Provenance Thorough reporting of the origin and analysis of the analyzed data, model preparation, and model validation. The impor‑
tance of documentation is paramount to ensure error detection, reliability, and reproducibility in AI-based research

Black box decision-making Certain AI algorithms use methods for decision-making or predictive tasks that are uninterpretable to human observers. 
Black box models compromise the reliability and transparency of AI systems, as well as the potential for researchers to gain 
clinically relevant insights from such algorithms

Explainability The possibility to trace how an AI system reached a conclusion in terms of input variables. Explainability is a key feature 
for error detection, bias elimination, and building trust in AI systems. Explainability also facilitates the inclusion of clinically 
relevant variables for model development

Distributional shift Changes in the characteristics or patterns of the test population and biased training data may lead to decreased accuracy 
of an AI prediction system, as the model fails to adapt to unfamiliar data

Adversarial example Data constructed different to the training examples, which may trick AI models to make incorrect predictions and jeopard‑
ize the safety of clinical prediction systems

Robustness The proficiency of an AI system at handing real-world data, with large variations or deviation from the assumptions held 
by the trained models (missing data, outliers, adversarial examples)

Generalizability The ability of AI systems to adapt to and correctly interpret data they were not trained on, thereby ensuring the elimina‑
tion of hidden biases in datasets. Generalizable AI systems deliver consistent performance with patient groups that are 
adequately represented, as well as those underrepresented in the training data

Reproducibility The ability of AI systems to produce consistent results when repeatedly trained on the same dataset

Replicability The ability of AI systems to produce consistent results when repeatedly trained on different datasets

Uncertainty quantification The process of measuring and determining the magnitude of uncertainty in the results of a predictive model based 
on input parameters, model characteristics, and inherent biases in the modeled system

Data labelling (annotation) The task of identifying instances of relevant variables in a given dataset, such as predictors and outcomes, necessary 
to train models for the assessment of unlabeled test data
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any transformations or modifications that were applied 
to it. Provenance is important in AI because it can help 
ensure that the data and models being used are reliable, 
trustworthy and can also help identify potential biases 
or errors in the data. Provenance in AI-based medical 
research is essential to build the trust required for clini-
cal implementation of decision support systems and pre-
diction tools, and to enable the design of replicable and 
transparent studies using AI. A hypothetical clinical deci-
sion support system designed to help clinicians optimize 
the treatment of patients with anterior cruciate ligament 
(ACL) injury can serve as an example to illustrate the role 
of provenance. Research studies for testing the validity of 
such a system will need to disclose the origin of the data 
the AI model was trained on, including the characteris-
tics of the population, the types of variables collected, the 
timeframe of data collection, potential sources of bias, to 
name a few. Furthermore, the decision support system 
will require a detailed description of the data process-
ing pipeline, model selection process, statistical analy-
sis, methods applied to train, test, and validate models, 
as well as the parameters used to fine-tune the decision 
support system. Another important step is to disclose 
metrics used for the assessment of model performance. 
While seemingly a tedious task, ensuring provenance is 
necessary to meet the high standards required for the 
safe and reliable implementation of AI-driven medical 
research.

One of the major concerns with the ability of AI sys-
tems to predict events is that steps taken by certain 
models to reach predictions are often inaccessible. This 
characteristic, termed black-box decision making, results 
in an inability for human observers to explain model out-
put in terms of the original input variables. This feature 
is particularly problematic for medical applications, as 
current decision making-systems are based on empiri-
cal rules, which allow human interpreters to trace the 
logic behind reasoning that leads to a certain outcome. 
This currently accepted and transparent approach ena-
bles humans to learn from systems, and perhaps as 
importantly, to detect and rectify errors and biases in 
the system, which may otherwise lead to false conclu-
sions and even dangerous consequences. While methods 
have been proposed to improve the explainability of ML 
models, their implementation may not be feasible with 
all data types. Consequently, future AI-intensive medi-
cal research should focus on enhanced human interpret-
ability, with the conversion of insight provided by the 
model to tangible knowledge that mirrors those of medi-
cal experts, with potential avenues for error detection. 
White-box ML models, aptly named to show the contrast 
to black-box models, provide a broken-down explana-
tion of the steps taken to reach a conclusion with insights 

about how the input data was used throughout the deci-
sion process [24]. This feature is also the key to ensure 
that the evidence generated by AI-intensive orthopaedic 
research stems from correct representations of research 
problems with the available data, rather than potential 
anomalies or artifacts in datasets [24]. Explanations may 
vary depending on the type of data and ML model, and 
can consist of highlighted pixels on a medical image, 
highlighted text in written documents, relevance scores 
assigned to different variables used to make a prediction, 
and more abstract methods when necessary [32]. Essen-
tially, a white-box approach to AI-intensive research 
answers how and why predictions are made and ensures 
that scientifically or clinically relevant building blocks 
are incorporated in the structure of models [39]. The 
immense value of such medical AI models lies in the 
capability to yield actionable insights to human users. 
Fundamental differences in interpretability between 
supervised and unsupervised learning approaches are 
beyond the scope of this section, and will be discussed in 
subsequent sections of this learning series.

As previously discussed, training AI systems on high-
quality datasets is a major requirement for clinical adap-
tation. However, even models trained with the most 
attention to detail and with carefully curated data may 
not be universally applicable to every clinical setting. 
What happens when AI  systems encounter unexpected 
changes in clinical context? Some examples of this phe-
nomenon may be obvious, such as the erroneous predic-
tion of ACL rerupture risk in female downhill skiers by 
a system that was trained predominantly on male foot-
ball players. However, a more subtle example may be the 
poor reproducibility of ACL rerupture risk prediction in 
patients from one country based on a model trained on 
registry data from another, with different demograph-
ics, injury profiles, and surgical techniques. The inabil-
ity of AI  systems to adapt to new situations, termed 
distributional shift, is a central problem for the univer-
sal application of models across different settings, and 
may be influenced by countless forms of selection bias 
that are difficult for researchers to foresee [12]. Recent 
evaluation of generalizability in relation to the use of 
predictive models for acute kidney injury incidence in 
hospitalized patients revealed discrepancies in perfor-
mance when applied to different patient populations [11]. 
The observed shortcomings in performance were attrib-
uted to the shortcoming that the acute kidney injury 
prediction models were trained on patient data collected 
from military veterans, and therefore failed to general-
ize to a more heterogeneous hospital patient cohort. To 
avoid such pitfalls, AI-intensive predictive model design 
should strive for the inclusion of training data represent-
ative of the population it was intended for, accounting 



Page 7 of 9Zsidai et al. Journal of Experimental Orthopaedics          (2023) 10:117 	

for sex-imbalance, racial disparity, and age composition. 
In the future, adversarial examples, which serve to trick 
AI  systems into making false predictions, may also be 
applied to check for model robustness, generalizability, 
and safety of use with data dissimilar to the training sam-
ple [21, 31]. Additionally, verification of reliable AI  sys-
tems will likely be achieved though the assessment of 
reproducibility in performance with different training 
instances on the same dataset, as well as replicability of 
performance with training datasets that substantially dif-
fer in composition [31].

Recent developments towards standardizing the 
reports of AI-intensive research include the CONSORT-
AI [23], STARD-AI [43], TRIPOD-AI [13], PROBAST-AI 
[13] and SPIRIT-AI [14] guidelines, which facilitate the 
implementation of rigorous guidelines reporting results 
and risk of bias in AI-intensive research. Notably, the 
DECIDE-AI [48] guideline was recently developed for 
the critical appraisal of studies reporting on early-stage, 
AI-driven clinical decision support systems. However, 
current guidelines primarily focus on the assessment 
of diagnostic interventions and clinical trials, which 
may only partially address the needs of the orthopae-
dic AI research community. The present learning series 
in AI-intensive research methods aims to address the 
increasing need for guidelines specific to AI-intensive 
orthopaedic research by culmination in a design and 
reporting checklist applicable across the broad range of 
study designs on the spectrum of evidence-based medical 
research.

Barriers to implementation – threats and ethical 
considerations
While the deployment of AI systems opens exciting pos-
sibilities in medical research, mitigation of the potential 
risks of false predictions will be an essential task in the 
ensuing years. Navigation between models that produce 
truthful versus misleading outputs may present unique 
challenges. An important question is the role of human 
involvement in the training phase of models used in AI 
systems. While medical research is heavily rooted in 
evidence-based thinking and expert consensus, it is also 
prone to human error and bias. Consequently, excessive 
human supervision in AI-driven research may force AI 
systems to make errors akin to those made by human 
reasoning. However, it is also clear that black-box models 
preclude the explainability required for the implemen-
tation of AI systems in high-risk clinical settings [12]. 
While current AI applications in healthcare primarily 
rely on correlative ML models, long-term clinical appli-
cations in orthopaedics will likely require models capable 
of conveying causal relationships between input data and 
research outcomes [4]. This is especially important when 

the goal is to develop reliable AI systems for predicting 
outcomes for hypothetical patients and scenarios.

This presents an important dilemma with practical 
and philosophical implications. One approach to solv-
ing complex research questions is to entrust models built 
on ground truths founded on human clinical knowledge 
and existing evidence. The advantage of such super-
vised learning is that truths are derived using represen-
tations comprehensible to humans, which in turn allows 
human assessment for correctness. Alternatively, certain 
models are capable of a more intuitive approach, with 
ground truths based on implicitly derived knowledge by 
the model, without human supervision of the learning 
process. In turn, an unsupervised learning approach can 
provide the benefit of superior pattern recognition and 
complex, intuitive reasoning at the cost of human inter-
pretability and assessment of the clinical relevance in the 
underlying logic. Future research will be required to rec-
oncile supervised and unsupervised approaches in medi-
cal AI system development, and to ensure explainability 
and truthfulness [10].

While the recent application of large language models, 
such as ChatGPT by Open AI [15, 35] and Med-PaLM 
[41] to medical prompt-answering and reasoning demon-
strate impressive capabilities, attention must be drawn to 
the need for thorough human evaluation of such appli-
cations, and potential threats before safe implementa-
tion. In general, the potential threats of AI systems are of 
crucial relevance in medical research and clinical prac-
tice, where room for error in diagnostic and therapeutic 
interventions is slim, with the potential for serious con-
sequences. Today, the output from AI systems can be 
generated based on a range of training data, including 
but not limited to patient registries, national databases, 
wearable devices, and clinical trials. In turn, rigorous 
measures must be taken by experts to collect and curate 
data and avoid biased results that lead to harmful con-
clusions. Rigorous uncertainty quantification of medi-
cal AI models is paramount to determine the certainty 
with which models can be applied to personalize medi-
cal treatment in the everyday clinical setting. Due to the 
complexity of state-of-the art ML models, uncertainty 
testing exceeds traditional statistical error assessment, 
and relies on various methods to convert a single pre-
diction to a distribution of predictions [1]. Additionally, 
a recent study reported that large language models can 
generate output convincing to experts and difficult to dis-
cern from human-generated information. Consequently, 
a significant portion of future research efforts regard-
ing the adoption of medical AI systems should focus on 
effective ways to monitor model safety and reliability, as 
well as responsible ways to publish AI-generated results. 
To pioneer trustworthy applications in orthopaedics, 
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guidelines and checklists should be developed for a range 
of research and clinical applications, warranting interdis-
ciplinary collaboration among medical professionals and 
computer scientists with AI expertise.

Conclusion
The boundaries of the safe and ethical use of AI in ortho-
paedic research remain to be determined. In the long-
term, over-reliance on AI-driven algorithmic diagnosis, 
risk-prediction, and prognostics may erode the critical 
thinking skills considered so essential for clinical medi-
cal practice today. Similar to the broad range of indus-
tries and scientific domains, careful planning will likely 
be required to strike the appropriate balance between 
human- and AI-driven innovation in orthopaedics and 
sports medicine. While AI will likely exceed human per-
formance in areas such as data analysis, pattern recog-
nition, and decision-making, the goal of clinicians and 
researchers will be to identify and execute innovative 
AI-driven applications in medicine and thereby enhance 
the quality of patient care. The aim of subsequent parts of 
this learning series is to supply readers with the compe-
tence to design and implement AI-driven research pro-
jects through proficiency in the following topics:

1.	 A fundamental technical introduction to AI and 
ML for orthopaedic researchers, with a focus on the 
potential approaches to be used in medical research.

2.	 Familiarity with the current state of AI in medical 
research and understanding of the potential benefit 
conferred by AI in orthopaedics.

3.	 Approaching hypotheses and research questions in 
orthopaedic research using AI methods and require-
ments for interdisciplinary collaboration.

4.	 Data management for AI-driven orthopaedic 
research projects.

5.	 Understanding and interpreting the output of ML-
models and AI systems.

6.	 End-product verification, safety in clinical use, and 
regulatory concerns.

7.	 A comprehensive checklist with regards to the previ-
ous principles to guide implementation of AI-driven 
research in orthopaedics.

Acknowledgements
Figure 1 was created with BioRender.com.

Informed consent
 Not applicable.

Authors’ contribution
All listed authors have contributed substantially to this work: Statistical 
analysis, review of the literature, and primary manuscript preparation were 
performed by BZ, ASH, JK, EN and RF. Editing and final manuscript prepara‑
tion was performed by BZ, EHS, AG, CL, UGL, EH, MTH, SK, RS, TT, KS, and RF. 

All authors have read the final manuscript and given final approval of the 
manuscript to be published. Each author consented to be accountable for all 
aspects of the research in ensuring that questions related to the accuracy or 
integrity of any part of the work are appropriately investigated and resolved.

Funding
Open access funding provided by University of Gothenburg. No funding was 
obtained for the current study.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
ASH is an industrial PhD student at Medfield Diagnostics AB, funded by the 
Wallenberg AI, Autonomous Systems and Software Program (WASP). MTH is a 
consultant for Medacta, Symbios and Depuy Synthess. KS is a member on the 
board of directors for Getinge AB (publ). RF is Chief Technology Officer and 
founder in Accelerandium AB, a software consultancy company.

Author details
1 Sahlgrenska Sports Medicine Center, Gothenburg, Sweden. 2 Department 
of Orthopaedics, Institute of Clinical Sciences, Sahlgrenska Academy, Univer‑
sity of Gothenburg, Gothenburg, Sweden. 3 Department of Computer Science 
and Engineering, Chalmers University of Technology, Gothenburg, Sweden. 
4 Medfield Diagnostics AB, Gothenburg, Sweden. 5 Department of Orthopaedic 
Surgery, UPMC Freddie Fu Sports Medicine Center, University of Pittsburgh, 
Pittsburgh, USA. 6 Department of Health and Rehabilitation, Institute of Neu‑
roscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 
Gothenburg, Sweden. 7 Sportrehab Sports Medicine Clinic, Gothenburg, 
Sweden. 8 IIa Clinica Ortopedica E Traumatologica, IRCCS Istituto Ortopedico 
Rizzoli, Bologna, Italy. 9 Department of Mathematics, University of Luxembourg, 
Esch‑Sur‑Alzette, Luxembourg. 10 Department of Orthopaedic and Trauma 
Surgery, Campus Bio-Medico University, Rome, Italy. 11 Department of Trauma, 
Hand and Reconstructive Surgery, University Hospital Münster, Münster, 
Germany. 12 Department of Orthopedic Surgery and Traumatology, Head 
Knee Surgery and DKF Head of Research, Kantonsspital Baselland, 4101 Bru‑
derholz, Switzerland. 13 Center of Orthopaedics and Traumatology, University 
Hospital Brandenburg a.d.H., Brandenburg Medical School Theodor Fontane, 
14770 Brandenburg a.d.H., Germany. 14 Faculty of Health Sciences Branden‑
burg, Brandenburg Medical School Theodor Fontane, 14770 Brandenburg 
a.d.H., Germany. 15 Department of Orthopaedic Surgery, Centre Hospitalier 
Luxembourg and Luxembourg Institute of Health, Luxembourg, Luxembourg. 
16 Clinic for Orthopaedics and Trauma Surgery, Malteser Waldkrankenhaus 
St. Marien, Erlangen, Germany. 17 Department of Orthopaedics, Sahlgrenska 
University Hospital, Mölndal, Sweden. 

Received: 24 July 2023   Accepted: 21 October 2023

References
	1.	 Abdar M, Pourpanah F, Hussain S, Rezazadegan D, Liu L, Ghavamzadeh 

M et al (2021) A review of uncertainty quantification in deep learning: 
Techniques, applications and challenges. Inf Fusion 76:243–297

	2.	 Acosta JN, Falcone GJ, Rajpurkar P, Topol EJ (2022) Multimodal biomedical 
AI. Nat Med 28:1773–1784

	3.	 Autor D, Levy F, Murnane R (2003) The skill content of recent technologi‑
cal change: an empirical exploration. Quart J Econ 118:1279–1333

	4.	 Bareinboim E, Correa JD, Ibeling D, Icard T.(2022) On Pearl’s hierarchy and 
the foundations of causal inference. In: Probabilistic and causal inference: 
the works of judea pearl. ACM Books p.507–556

	5.	 Benjamens S, Dhunnoo P, Mesko B (2020) The state of artificial intelli‑
gence-based FDA-approved medical devices and algorithms: an online 
database. NPJ Digit Med 3:118

	6.	 Bien N, Rajpurkar P, Ball RL, Irvin J, Park A, Jones E et al (2018) Deep-
learning-assisted diagnosis for knee magnetic resonance imaging: 



Page 9 of 9Zsidai et al. Journal of Experimental Orthopaedics          (2023) 10:117 	

Development and retrospective validation of MRNet. PLoS Med 
15:e1002699

	7.	 Biron DR, Sinha I, Kleiner JE, Aluthge DP, Goodman AD, Sarkar IN et al 
(2020) A novel machine learning model developed to assist in patient 
selection for outpatient total shoulder arthroplasty. J Am Acad Orthop 
Surg 28:e580–e585

	8.	 Bjornsson B, Borrebaeck C, Elander N, Gasslander T, Gawel DR, Gustafsson 
M et al (2019) Digital twins to personalize medicine. Genome Med 12:4

	9.	 Brinker TJ, Hekler A, Enk AH, Berking C, Haferkamp S, Hauschild A et al 
(2019) Deep neural networks are superior to dermatologists in melanoma 
image classification. Eur J Cancer 119:11–17

	10.	 Burns C, Ye H, Klein D, Steinhardt J (2022) Discovering latent knowledge 
in language models without supervision. arXiv preprint arXiv:2212.03827

	11.	 Cao J, Zhang X, Shahinian V, Yin H, Steffick D, Saran R et al (2022) General‑
izability of an acute kidney injury prediction model across health systems. 
Nat Mach Intell 4:1121–1129

	12.	 Challen R, Denny J, Pitt M, Gompels L, Edwards T, Tsaneva-Atanasova 
K (2019) Artificial intelligence, bias and clinical safety. BMJ Qual Saf 
28:231–237

	13.	 Collins GS, Dhiman P, Andaur Navarro CL, Ma J, Hooft L, Reitsma JB et al 
(2021) Protocol for development of a reporting guideline (TRIPOD-AI) 
and risk of bias tool (PROBAST-AI) for diagnostic and prognostic predic‑
tion model studies based on artificial intelligence. BMJ Open 11:e048008

	14.	 Cruz Rivera S, Liu X, Chan AW, Denniston AK, Calvert MJ, Spirit AI et al 
(2020) Guidelines for clinical trial protocols for interventions involv‑
ing artificial intelligence: the SPIRIT-AI extension. Lancet Digit Health 
2:e549–e560

	15.	 Dahmen J, Kayaalp ME, Ollivier M, Pareek A, Hirschmann MT, Karlsson J, 
et al. (2023) Artificial intelligence bot ChatGPT in medical research: the 
potential game changer as a double-edged sword. Knee Surg Sports 
Traumatol Arthrosc;https://​doi.​org/​10.​1007/​s00167-​023-​07355-6

	16.	 Fritz B, Marbach G, Civardi F, Fucentese SF, Pfirrmann CWA (2020) Deep 
convolutional neural network-based detection of meniscus tears: com‑
parison with radiologists and surgery as standard of reference. Skeletal 
Radiol 49:1207–1217

	17.	 Guermazi A, Tannoury C, Kompel AJ, Murakami AM, Ducarouge A, Gillib‑
ert A et al (2022) Improving radiographic fracture recognition perfor‑
mance and efficiency using artificial intelligence. Radiology 302:627–636

	18.	 Hamrin Senorski E, Svantesson E, Engebretsen L, Lind M, Forssblad 
M, Karlsson J et al (2019) 15 years of the Scandinavian knee ligament 
registries: lessons, limitations and likely prospects. Br J Sports Med 
53:1259–1260

	19.	 Hernigou P, Olejnik R, Safar A, Martinov S, Hernigou J, Ferre B (2021) 
Digital twins, artificial intelligence, and machine learning technology to 
identify a real personalized motion axis of the tibiotalar joint for robotics 
in total ankle arthroplasty. Int Orthop 45:2209–2217

	20.	 Kop M (2021) EU Artificial Intelligence Act: The European Approach to 
AI. Transatlantic Antitrust and IPR Developments, Stanford University, 
Stanford - Vienna Transatlantic Technology Law Forum

	21.	 Lavin A, Gilligan-Lee CM, Visnjic A, Ganju S, Newman D, Ganguly S et al 
(2022) Technology readiness levels for machine learning systems. Nat 
Commun 13:6039

	22.	 Ley C, Martin RK, Pareek A, Groll A, Seil R, Tischer T (2022) Machine learn‑
ing and conventional statistics: making sense of the differences. Knee 
Surg Sports Traumatol Arthrosc 30:753–757

	23.	 Liu X, Rivera SC, Moher D, Calvert MJ, Denniston AK, Spirit AI et al (2020) 
Reporting guidelines for clinical trial reports for interventions involving 
artificial intelligence: the CONSORT-AI Extension. BMJ 370:m3164

	24.	 Loyola-González O (2019) Black-Box vs. White-Box: Understanding Their 
Advantages and Weaknesses From a Practical Point of View. IEEE Access 
7:154096–154113

	25.	 Martin RK, Ley C, Pareek A, Groll A, Tischer T, Seil R (2022) Artificial intel‑
ligence and machine learning: an introduction for orthopaedic surgeons. 
Knee Surg Sports Traumatol Arthrosc 30:361–364

	26.	 Martin RK, Pareek A, Krych AJ, Maradit Kremers H, Engebretsen L (2021) 
Machine learning in sports medicine: need for improvement. J ISAKOS 
6:1–2

	27.	 Martin RK, Wastvedt S, Pareek A, Persson A, Visnes H, Fenstad AM et al 
(2022) Predicting anterior cruciate ligament reconstruction revision: a 
machine learning analysis utilizing the Norwegian knee ligament register. 
J Bone Joint Surg Am 104:145–153

	28.	 Martin RK, Wastvedt S, Pareek A, Persson A, Visnes H, Fenstad AM et al 
(2022) Machine learning algorithm to predict anterior cruciate ligament 
revision demonstrates external validity. Knee Surg Sports Traumatol 
Arthrosc 30:368–375

	29	 McDonnell JM, Evans SR, McCarthy L, Temperley H, Waters C, Ahern D 
et al (2021) The diagnostic and prognostic value of artificial intelligence 
and artificial neural networks in spinal surgery : a narrative review. Bone 
Joint J 103-B:1442–1448

	30.	 Medina G, Buckless CG, Thomasson E, Oh LS, Torriani M (2021) Deep 
learning method for segmentation of rotator cuff muscles on MR images. 
Skeletal Radiol 50:683–692

	31.	 Mincu D, Roy S (2022) Developing robust benchmarks for driving forward 
AI innovation in healthcare. Nat Mach Intell 4:916–921

	32.	 Montavon G, Samek W, Müller K-R (2018) Methods for interpreting and 
understanding deep neural networks. Digital Signal Processing 73:1–15

	33.	 Ø B, Rasheed B, Schaathun HG, Pedersen MD, Steinert M, Hellevik AI, et al 
(2022) Toward a digital twin for arthroscopic knee surgery: a systematic 
review. IEEE Access 10:45029–45052

	34.	 Oliveira ECL, van den Merkhof A, Olczak J, Gordon M, Jutte PC, Jaarsma RL 
et al (2021) An increasing number of convolutional neural networks for 
fracture recognition and classification in orthopaedics : are these exter‑
nally validated and ready for clinical application? Bone Jt Open 2:879–885

	35.	 Ollivier M, Pareek A, Dahmen J, Kayaalp ME, Winkler PW, Hirschmann 
MT, et al. (2023) A deeper dive into ChatGPT: history, use and future 
perspectives for orthopaedic research. Knee Surg Sports Traumatol 
Arthrosc;https://​doi.​org/​10.​1007/​s00167-​023-​07372-5

	36.	 Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Rajendra Acharya 
U (2020) Automated detection of COVID-19 cases using deep neural 
networks with X-ray images. Comput Biol Med 121:103792

	37.	 Rajpurkar P, Chen E, Banerjee O, Topol EJ (2022) AI in health and medicine. 
Nat Med 28:31–38

	38.	 Ramkumar PN, Luu BC, Haeberle HS, Karnuta JM, Nwachukwu BU, Wil‑
liams RJ (2022) Sports Medicine and Artificial Intelligence: A Primer. Am J 
Sports Med 50:1166–1174

	39.	 Roscher R, Bohn B, Duarte MF, Garcke J (2020) Explainable Machine Learn‑
ing for Scientific Insights and Discoveries. IEEE Access 8:42200–42216

	40.	 Seah JCY, Tang CHM, Buchlak QD, Holt XG, Wardman JB, Aimoldin A et al 
(2021) Effect of a comprehensive deep-learning model on the accuracy 
of chest x-ray interpretation by radiologists: a retrospective, multireader 
multicase study. Lancet Digit Health 3:e496–e506

	41.	 Singhal K, Azizi S, Tu T, Mahdavi SS, Wei J, Chung HW, et al. (2022) Large Lan‑
guage Models Encode Clinical Knowledge. arXiv preprint arXiv:2212.13138

	42.	 Siontis KC, Noseworthy PA, Attia ZI, Friedman PA (2021) Artificial 
intelligence-enhanced electrocardiography in cardiovascular disease 
management. Nat Rev Cardiol 18:465–478

	43.	 Sounderajah V, Ashrafian H, Aggarwal R, De Fauw J, Denniston AK, 
Greaves F et al (2020) Developing specific reporting guidelines for diag‑
nostic accuracy studies assessing AI interventions: The STARD-AI Steering 
Group. Nat Med 26:807–808

	44.	 Strom P, Kartasalo K, Olsson H, Solorzano L, Delahunt B, Berney DM et al 
(2020) Artificial intelligence for diagnosis and grading of prostate cancer in 
biopsies: a population-based, diagnostic study. Lancet Oncol 21:222–232

	45.	 Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND, Gan A et al (2017) 
Development and Validation of a Deep Learning System for Diabetic 
Retinopathy and Related Eye Diseases Using Retinal Images From Multi‑
ethnic Populations With Diabetes. JAMA 318:2211–2223

	46.	 Tran A, Lassalle L, Zille P, Guillin R, Pluot E, Adam C et al (2022) Deep 
learning to detect anterior cruciate ligament tear on knee MRI: multi-
continental external validation. Eur Radiol 32:8394–8403

	47.	 Van Eetvelde H, Mendonca LD, Ley C, Seil R, Tischer T (2021) Machine 
learning methods in sport injury prediction and prevention: a systematic 
review. J Exp Orthop 8:27

	48.	 Vasey B, Nagendran M, Campbell B, Clifton DA, Collins GS, Denaxas S 
et al (2022) Reporting guideline for the early stage clinical evaluation of 
decision support systems driven by artificial intelligence: DECIDE-AI. BMJ 
377:e070904

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in  
published maps and institutional affiliations.

https://doi.org/10.1007/s00167-023-07355-6
https://doi.org/10.1007/s00167-023-07372-5

	A practical guide to the implementation of AI in orthopaedic research – part 1: opportunities in clinical application and overcoming existing challenges
	Abstract 
	Introduction
	How can medical research benefit from the implementation of AI systems?
	A general overview of AI applications in medicine
	Prediction of disease- or condition-specific outcomes
	Medical image analysis
	Decision support systems
	Digital twin technology

	Appraisal of quality and safety in medical AI research
	Barriers to implementation – threats and ethical considerations
	Conclusion
	Acknowledgements
	References


