60 research outputs found

    Inhibition of Monkeypox virus replication by RNA interference

    Get PDF
    The Orthopoxvirus genus of Poxviridae family is comprised of several human pathogens, including cowpox (CPXV), Vaccinia (VACV), monkeypox (MPV) and Variola (VARV) viruses. Species of this virus genus cause human diseases with various severities and outcome ranging from mild conditions to death in fulminating cases. Currently, vaccination is the only protective measure against infection with these viruses and no licensed antiviral drug therapy is available. In this study, we investigated the potential of RNA interference pathway (RNAi) as a therapeutic approach for orthopox virus infections using MPV as a model. Based on genome-wide expression studies and bioinformatic analysis, we selected 12 viral genes and targeted them by small interference RNA (siRNA). Forty-eight siRNA constructs were developed and evaluated in vitro for their ability to inhibit viral replication. Two genes, each targeted with four different siRNA constructs in one pool, were limiting to viral replication. Seven siRNA constructs from these two pools, targeting either an essential gene for viral replication (A6R) or an important gene in viral entry (E8L), inhibited viral replication in cell culture by 65-95% with no apparent cytotoxicity. Further analysis with wild-type and recombinant MPV expressing green fluorescence protein demonstrated that one of these constructs, siA6-a, was the most potent and inhibited viral replication for up to 7 days at a concentration of 10 nM. These results emphasis the essential role of A6R gene in viral replication, and demonstrate the potential of RNAi as a therapeutic approach for developing oligonucleotide-based drug therapy for MPV and other orthopox viruses

    Animal Models for the Study of Rodent-Borne Hemorrhagic Fever Viruses: Arenaviruses and Hantaviruses

    Get PDF
    Human pathogenic hantaviruses and arenaviruses are maintained in nature by persistent infection of rodent carrier populations. Several members of these virus groups can cause significant disease in humans that is generically termed viral hemorrhagic fever (HF) and is characterized as a febrile illness with an increased propensity to cause acute inflammation. Human interaction with rodent carrier populations leads to infection. Arenaviruses are also viewed as potential biological weapons threat agents. There is an increased interest in studying these viruses in animal models to gain a deeper understating not only of viral pathogenesis, but also for the evaluation of medical countermeasures (MCM) to mitigate disease threats. In this review, we examine current knowledge regarding animal models employed in the study of these viruses. We include analysis of infection models in natural reservoirs and also discuss the impact of strain heterogeneity on the susceptibility of animals to infection. This information should provide a comprehensive reference for those interested in the study of arenaviruses and hantaviruses not only for MCM development but also in the study of viral pathogenesis and the biology of these viruses in their natural reservoirs

    Inhibition of Monkeypox virus replication by RNA interference

    No full text
    Abstract The Orthopoxvirus genus of Poxviridae family is comprised of several human pathogens, including cowpox (CPXV), Vaccinia (VACV), monkeypox (MPV) and Variola (VARV) viruses. Species of this virus genus cause human diseases with various severities and outcome ranging from mild conditions to death in fulminating cases. Currently, vaccination is the only protective measure against infection with these viruses and no licensed antiviral drug therapy is available. In this study, we investigated the potential of RNA interference pathway (RNAi) as a therapeutic approach for orthopox virus infections using MPV as a model. Based on genome-wide expression studies and bioinformatic analysis, we selected 12 viral genes and targeted them by small interference RNA (siRNA). Forty-eight siRNA constructs were developed and evaluated in vitro for their ability to inhibit viral replication. Two genes, each targeted with four different siRNA constructs in one pool, were limiting to viral replication. Seven siRNA constructs from these two pools, targeting either an essential gene for viral replication (A6R) or an important gene in viral entry (E8L), inhibited viral replication in cell culture by 65-95% with no apparent cytotoxicity. Further analysis with wild-type and recombinant MPV expressing green fluorescence protein demonstrated that one of these constructs, siA6-a, was the most potent and inhibited viral replication for up to 7 days at a concentration of 10 nM. These results emphasis the essential role of A6R gene in viral replication, and demonstrate the potential of RNAi as a therapeutic approach for developing oligonucleotide-based drug therapy for MPV and other orthopox viruses.</p

    Validation of a pan-orthopox real-time PCR assay for the detection and quantification of viral genomes from nonhuman primate blood

    No full text
    Abstract Background In 1980, smallpox disease was eradicated from nature and Variola virus, the etiological agent of smallpox, was confined to two laboratories, one located in Russia (Moscow) later moved to VECTOR (Novosibirsk, Siberia) and one in the United States (CDC Atlanta). Vaccinations among the general public ceased shortly after the successful eradication campaign, resulting in an increasingly immunologically susceptible population. Because of the possibility of intentional reintroduction of Variola virus and the emergence of other pathogenic poxviruses, there is a great need for the development of medical countermeasures to treat poxvirus disease. It is highly likely that the U.S. FDA “animal rule” will be necessary for regulatory approval of these interventions. Therefore, relevant animal models and the associated supporting assays will require development to stand up to regulatory scrutiny. Methods An optimized real time PCR assay for the detection of orthopoxviruses has been developed by researchers at the United States Army Research Institute of Infectious Diseases (USAMRIID). To support animal studies that will be used to support approval of medical countermeasures by the U.S. FDA, the assay was designed to quantitate poxvirus genomic DNA in a nonhuman primate (cynomolgus macaque) blood matrix as a measurement of viremia. This manuscript describes the validation of the process, including DNA extraction from whole blood anticoagulated with EDTA, for obtaining and quantitating monkeypox genomes by evaluating precision, accuracy, the standard curve, specificity, robustness and stability of the assay and/or components of the assay. Results The assay had a lower limit of quantitation of 50 genome copies/5 uL sample, upper limit of quantitation of 5 × 107 GC/5uL sample and a limit of detection of 2.5 genome copies /5uL sample. The assay was specific for orthopoxvirus. Matrix effects were detected and suggest the presence of PCR inhibitor(s) that was co-extracted with the target DNA. Conclusions The assay has been validated for the purpose of quantitating monkeypox viral load in blood from cynomolgus macaques. This assay has and will continue to support submissions to the FDA for approval of antiviral therapeutics for smallpox

    Intranasal monkeypox marmoset model: Prophylactic antibody treatment provides benefit against severe monkeypox virus disease.

    No full text
    Concerns regarding outbreaks of human monkeypox or the potential reintroduction of smallpox into an immunological naïve population have prompted the development of animal models and countermeasures. Here we present a marmoset model of monkeypox and smallpox disease utilizing a relevant poxvirus via a natural exposure route. We found that 1000 plaque forming units (PFU) of Monkeypox virus was sufficient to recapitulate smallpox disease, to include an incubation period of approximately 13 days, followed by the onset of rash, and death between 15 and 17 days. Temporally accurate manifestation of viremia and oral shedding were also features. The number of lesions ranged from no lesions to 299, the most reported in a marmoset exposed to a poxvirus. To both evaluate the efficacy of our antibodies and the applicability of the model system, marmosets were prophylactically treated with two monoclonal antibodies, c7D11 and c8A. Of three marmosets, two were completely free of disease and a single marmoset died 8 days after the mock (n = 1) or PBS control(s) (n = 2). Evaluation of the serum levels of the three animals provided a possible explanation to the animal succumbing to disease. Interestingly, more females had lesions (and a greater number of lesions) and lower viral burden (viremia and oral shedding) than males in our studies, suggesting a possible gender effect

    Effect of Monkeypox Virus Preparation on the Lethality of the Intravenous Cynomolgus Macaque Model

    No full text
    For over two decades, researchers have sought to improve smallpox vaccines and also develop therapies to ensure protection against smallpox or smallpox-like disease. The 2022 human monkeypox pandemic is a reminder that these efforts should persist. Advancing such therapies have involved animal models primarily using surrogate viruses such as monkeypox virus. The intravenous monkeypox model in macaques produces a disease that is clinically similar to the lesional phase of fulminant human monkeypox or smallpox. Two criticisms of the model have been the unnatural route of virus administration and the high dose required to induce severe disease. Here, we purified monkeypox virus with the goal of lowering the challenge dose by removing cellular and viral contaminants within the inoculum. We found that there are advantages to using unpurified material for intravenous exposures

    Susceptibility of Marmosets (Callithrix jacchus) to Monkeypox Virus: A Low Dose Prospective Model for Monkeypox and Smallpox Disease.

    No full text
    Although current nonhuman primate models of monkeypox and smallpox diseases provide some insight into disease pathogenesis, they require a high titer inoculum, use an unnatural route of infection, and/or do not accurately represent the entire disease course. This is a concern when developing smallpox and/or monkeypox countermeasures or trying to understand host pathogen relationships. In our studies, we altered half of the test system by using a New World nonhuman primate host, the common marmoset. Based on dose finding studies, we found that marmosets are susceptible to monkeypox virus infection, produce a high viremia, and have pathological features consistent with smallpox and monkeypox in humans. The low dose (48 plaque forming units) required to elicit a uniformly lethal disease and the extended incubation (preclinical signs) are unique features among nonhuman primate models utilizing monkeypox virus. The uniform lethality, hemorrhagic rash, high viremia, decrease in platelets, pathology, and abbreviated acute phase are reflective of early-type hemorrhagic smallpox

    Levels of c8A and c7D11monoclonal antibodies in infected and uninfected marmosets.

    No full text
    <p>Marmosets were subcutaneously injected with a 1:1 mixture of a cocktail containing c8A and c7D1 (20mg/Kg of each antibody per animal). A single animal was not exposed to monkeypox virus (#11). Of the exposed animals, Days 1, 12 and 21 were analyzed for the presence of c7D11 (A) and c8A (B). For infected animals #8, #9 and #10, days are relative to the day of exposure. For animal #11, days are relative to subcutaneous injection of the antibody.</p

    Viremia and viral shedding in marmosets exposed to intranasal monkeypox virus.

    No full text
    <p>Whole blood and oral swabs were processed and titrated onto BSC-1 cells. Two of four animals had detectable levels of virus in blood samples on the Day 9. Virus from oral swabs was detectable as early as day 6 (high dosed animal #4). Limits of detection for whole blood (dashed orange line) and for oral swabs (dashed blue line). All animals were positive to varying extents. Notice the onset of oral shedding relative to viremia.</p
    corecore