7 research outputs found

    Towards rational design of peptides for selective interaction with inorganic materials

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Biological Engineering Division, 2007.MIT Science Library copy: printed in leaves.Also issued printed in leaves.Includes bibliographical references (p. 127-141).Utilizing molecular recognition and self-assembly, material-specific biomolecules have shown great promise for engineering and ordering materials at the nanoscale. These molecules, inspired from natural biomineralization systems, are now commonly selected against non-natural inorganic materials through biopanning random combinatorial peptide libraries. Unfortunately, the challenge of studying the biological inorganic interface has slowed the understanding of interactions principles, and hence limited the number of downstream applications. This work focuses on the facile study of the peptide-inorganic interface using Yeast Surface Display. The general approach is to use combinatorial selection to suggest interaction principles followed by rational design to refine understanding. In this pursuit, two material groups-II-VI semiconductors and synthetic sapphire (metal oxides)-are chosen as inorganic targets due to their technological relevance and ease of study. First, yeast surface display (YSD) was established as a broadly applicable method for studying peptide-material interactions by screening a human scFv YSD library against cadmium sulfide (CdS), a II-VI semiconductor. The presence of multiple histidine residues was found to be necessary for mediating cell binding to CdS. As a follow-up, a systematic screen with yeast displayed rationally designed peptides was performed on a panel of II-VI semiconductors and gold. Cell binding results indicated that peptide interaction was mediated by a limited number of amino acids that were influenced by locally situated residues. Interpretation of the results facilitated design of new peptides with desired material specificities. Next, the nature of peptide/metal oxide binding interface was interrogated using sapphire crystalline faces as model surfaces.(cont.) Biopanning a random peptide YSD library and subsequent characterization of the identified binding partners revealed the importance of multiple basic amino acids in the binding event. Study of rationally designed basic peptides revealed a preference for those amino acids to be spaced in such a manner that maximized simultaneous interaction with the surface. Fusing peptides to maltose binding protein (MBP) allowed for quantitative affinity measurement with the best peptides having low nanomolar equilibrium dissociation constants. Finally, peptides were demonstrated as facile affinity tags for protein immobilization in micro-patterning and biosensor assays.by Eric Mark Krauland.Ph.D

    Profiling the Biophysical Developability Properties of Common IgG1 Fc Effector Silencing Variants

    No full text
    Therapeutic antibodies represent the most significant modality in biologics, with around 150 approved drugs on the market. In addition to specific target binding mediated by the variable fragments (Fvs) of the heavy and light chains, antibodies possess effector functions through binding of the constant region (Fc) to Fcγ receptors (FcγR), which allow immune cells to attack and kill target cells using a variety of mechanisms. However, for some applications, including T-cell-engaging bispecifics, this effector function is typically undesired. Mutations within the lower hinge and the second constant domain (CH2) of IgG1 that comprise the FcγR binding interface reduce or eliminate effector function (“Fc silencing”) while retaining binding to the neonatal Fc receptor (FcRn), important for normal antibody pharmacokinetics (PKs). Comprehensive profiling of biophysical developability properties would benefit the choice of constant region variants for development. Here, we produce a large panel of representative mutations previously described in the literature and in many cases in clinical or approved molecules, generate select combinations thereof, and characterize their binding and biophysical properties. We find that some commonly used CH2 mutations, including D265A and P331S, are effective in reducing binding to FcγR but significantly reduce stability, promoting aggregation, particularly under acidic conditions commonly employed in manufacturing. We highlight mutation sets that are particularly effective for eliminating Fc effector function with the retention of WT-like stability, including L234A, L235A, and S267K (LALA-S267K), L234A, L235E, and S267K (LALE-S267K), L234A, L235A, and P329A (LALA-P329A), and L234A, L235E, and P329G (LALE-P329G)
    corecore