17 research outputs found

    Transkription und DNA-Reparatur in den Bruchpunktsregionen des MLL-Gens und seiner fünf häufigsten Translokationspartnergene AF4, AF9, AF10, ELL und ENL

    No full text
    In der Vergangenheit wurden verschiedene Fusionstranskripte, welche normalerweise bei Leukämie-assoziierten chromosomalen Translokationen auftreten, in hämatopoetischen Zellen gesunder Personen gefunden. Da diese Personen keine entsprechenden chromosomalen Abberationen aufwiesen, ist es sehr wahrscheinlich, dass diese Fusionstranskripte durch trans-Spleißen entstehen. Während dieser Arbeit konnten durch inverse PCR, welche an unbehandelter cDNA gesunder Probanden durchgeführt wurde, intragenische trans-Spleiß-Produkte nachgewiesen werden. Interessanterweise weisen das MLL-Gen und seine fünf häufigsten Translokationspartner AF4, AF9, AF10, ELL und ENL ein großes Spektrum an trans-gespleißten RNAs auf. Nur in einem weiteren Mitglied der MLL-Familie (MLL3) konnte intragenisches trans-Spleißen nachgewiesen werden. Für verschiedene als Kontrolle verwendete Haushaltsgene konnte kein intragenisches trans-Spleißen nachgewiesen werden. Intergenische trans-Spleiß-Ereignisse konnten durch direkte PCR und RACEExperimente für die Gene MLL, ELL und ENL nachgewiesen werden. Bemerkenswerterweise entsprechen ein intragenisches trans-Spleiß-Produkt des MLL-Gens dem Transkript der chromosomalen Abberationen MLL-PTD und ein intergenisches trans-Spleiß-Produkt des MLL-Gens dem Transkript der chromosomalen Abberationen MLL•AF4. In Hefe konnte gezeigt werden, dass RNA als Vorlage für DNA-Reparaturen dienen kann. Somit lag der Schluß nahe, dass die oben genannten trans-gespleißten RNAs möglicherweise einen Einfluss auf die DNA-Reparatur haben. Dass RNA nicht nur in Hefen sondern auch in Menschen als Vorlage für DNA-Reparaturen dienen kann, konnte im Zuge dieser Arbeit durch mehrere in vitro Experimente mit Kernextrakten aus humanen Zelllinien bestätigt werden. Allerdings konnte keinerlei Einfluss von (trans-)gespleißter RNA auf die DNA-Reparatur in zahlreichen in vitro Experimenten nachgewiesen werden. Mit einem daraufhin etablierten in vivo System konnte ebenfalls ein Einfluss von (trans-) gespleißter RNA auf die DNA-Reparatur ausgeschlossen werden. Weiterhin konnten mit Hilfe der durchgeführten RACE-Experimente vorzeitige Polyadenylierungen von Transkripten in den Bruchpunktsregionen von MLL, AF4, AF9 und ENL identifiziert werden. Durch diese ungewöhnliche Termination der Transkription werden stark verkürzte Transkripte erzeugt, welche in kurze Proteinisoformen translatiert werden können. Ein Vergleich von 274 unterschiedlichen Bruchpunktsequenzen mit größeren direkten und indirekten Sequenzwiederholungen zwischen der Bruchpunktsregion von MLL und den Bruchpunktsregionen seiner häufigsten Translokationspartner wurde ebenfalls durchgeführt. Eine signifikante Korrelation zwischen den Sequenzwiederholungen und der Lokalisation der Bruchpunkte war jedoch nicht erkennbar. Bei diesem Vergleich fielen allerdings Häufungen von Bruchpunkten im MLL-Gen mit AF4, AF9 und ENL als Translokationspartner auf, wobei sich die Ursache für diese Häufungen auf Topoisomerase II Spaltstellen zurückführen ließ

    The role of reciprocal fusions in MLL-r acute leukemia: studying the chromosomal translocation t(6;11)

    No full text
    Leukemia patients bearing t(6;11)(q27;q23) translocations can be divided in two subgroups: those with breakpoints in the major breakpoint cluster region of MLL (introns 9–10; associated mainly with AML M1/4/5), and others with breakpoints in the minor breakpoint cluster region (introns 21–23), associated with T-ALL. We cloned all four of the resulting fusion genes (MLL-AF6, AF6-MLL, exMLL-AF6, AF6-shMLL) and subsequently transfected them to generate stable cell culture models. Their molecular function was tested by inducing gene expression for 48 h in a Doxycycline-dependent fashion. Here, we present our results upon differential gene expression (DGE) that were obtained by the “Massive Analyses of cDNA Ends” (MACE-Seq) technology, an established 3′-end based RNA-Seq method. Our results indicate that the PHD/BD domain, present in the AF6-MLL and the exMLL-AF6 fusion protein, is responsible for chromatin activation in a genome-wide fashion. This led to strong deregulation of transcriptional processes involving protein-coding genes, pseudogenes, non-annotated genes, and RNA genes, e.g., LincRNAs and microRNAs, respectively. While cooperation between the MLL-AF6 and AF6-MLL fusion proteins appears to be required for the above-mentioned effects, exMLL-AF6 is able to cause similar effects on its own. The exMLL-AF6/AF6-shMLL co-expressing cell line displayed the induction of a myeloid-specific and a T-cell specific gene signature, which may explain the T-ALL disease phenotype observed in patients with such breakpoints. This again demonstrated that MLL fusion proteins are instructive and allow to study their pathomolecular mechanisms

    Functional characterisation of different MLL fusion proteins by using inducible Sleeping Beauty vectors

    No full text
    Our focus is the identification, characterisation and functional analysis of different MLL fusions. In general, MLL fusion proteins are encoded by large cDNA cassettes that are difficult to transduce into haematopoietic stem cells. This is due to the size limitations of the packaging process of those vector-encoded RNAs into retro- or lentiviral particles. Here, we present our efforts in establishing a universal vector system to analyse different MLL fusions. The universal cloning system was embedded into the backbone of the Sleeping Beauty transposable element. This transposon has no size limitation and displays no integration preference, thereby avoiding the integration into active genes or their promoter regions. We utilised this novel system to test different MLL fusion alleles (MLL-NEBL, NEBL-MLL, MLL-LASP1, LASP1-MLL, MLL-MAML2, MAML2-MLL, MLL-SMAP1 and SMAP1-MLL) in appropriate cell lines. Stable cell lines were analysed for their growth behaviour, focus formation and colony formation capacity and ectopic Hoxa gene transcription. Our results show that only 1/4 tested direct MLL fusions, but 3/4 tested reciprocal MLL fusions exhibit oncogenic functions. From these pilot experiments, we conclude that a systematic analysis of more MLL fusions will result in a more differentiated picture about the oncogenic capacity of distinct MLL fusions

    Do non-genomically encoded fusion transcripts cause recurrent chromosomal translocations?

    Get PDF
    We among others have recently demonstrated that normal cells produce “fusion mRNAs”. These fusion mRNAs do not derive from rearranged genomic loci, but rather they are derived from “early-terminated transcripts” (ETTs). Premature transcriptional termination takes place in intronic sequences that belong to “breakpoint cluster regions”. One important property of ETTs is that they exhibit an unsaturated splice donor site. This results in: (1) splicing to “cryptic exons” present in the final intron; (2) Splicing to another transcript of the same gene (intragenic trans-splicing), resulting in “exon repetitions”; (3) splicing to a transcript of another gene (intergenic trans-splicing), leading to “non-genomically encoded fusion transcripts” (NGEFTs). These NGEFTs bear the potential risk to influence DNA repair processes, since they share identical nucleotides with their DNA of origin, and thus, could be used as “guidance RNA” for DNA repair processes. Here, we present experimental data about four other genes. Three of them are associated with hemato-malignancies (ETV6, NUP98 and RUNX1), while one is associated with solid tumors (EWSR1). Our results demonstrate that all genes investigated so far (MLL, AF4, AF9, ENL, ELL, ETV6, NUP98, RUNX1 and EWSR1) display ETTs and produce transpliced mRNA species, indicating that this is a genuine property of translocating genes

    How chromosomal translocations arise to cause cancer: gene proximity, trans-splicing, and DNA end joining

    No full text
    Chromosomal translocations (CTs) are a genetic hallmark of cancer. They could be identified as recurrent genetic aberrations in hemato-malignancies and solid tumors. More than 40% of all “cancer genes” were identified in recurrent CTs. Most of these CTs result in the production of oncofusion proteins of which many have been studied over the past decades. They influence signaling pathways and/or alter gene expression. However, a precise mechanism for how these CTs arise and occur in a nearly identical fashion in individuals remains to be elucidated. Here, we performed experiments that explain the onset of CTs: (1) proximity of genes able to produce prematurely terminated transcripts, which lead to the production of (2) trans-spliced fusion RNAs, and finally, the induction of (3) DNA double-strand breaks which are subsequently repaired via EJ repair pathways. Under these conditions, balanced chromosomal translocations could be specifically induced. The implications of these findings will be discussed

    MLL-AF4 and a murinized pSer-variant thereof are turning on the nucleolar stress pathway

    No full text
    Background. Recent pathomolecular studies on the MLL-AF4 fusion protein revealed that the murinized version of MLL-AF4, the MLL-Af4 fusion protein, was able to induce leukemia when expressed in murine or human hematopoietic stem/progenitor cells (Lin et al. in Cancer Cell 30:737–749, 2016). In parallel, a group from Japan demonstrated that the pSer domain of the AF4 protein, as well as the pSer domain of the MLL-AF4 fusion is able to bind the Pol I transcription factor complex SL1 (Okuda et al. in Nat Commun 6:8869, 2015). Here, we investigated the human MLL-AF4 and a pSer-murinized version thereof for their functional properties in mammalian cells. Gene expression profiling studies were complemented by intracellular localization studies and functional experiments concerning their biological activities in the nucleolus. Results: Based on our results, we have to conclude that MLL-AF4 is predominantly localizing inside the nucleolus, thereby interfering with Pol I transcription and ribosome biogenesis. The murinized pSer-variant is localizing more to the nucleus, which may suggest a different biological behavior. Of note, AF4-MLL seems to cooperate at the molecular level with MLL-AF4 to steer target gene transcription, but not with the pSer-murinized version of it. Conclusion: This study provides new insights and a molecular explanation for the described differences between hMLL-hAF4 (not leukemogenic) and hMLL-mAf4 (leukemogenic). While the human pSer domain is able to efficiently recruit the SL1 transcription factor complex, the murine counterpart seems to be not. This has several consequences for our understanding of t(4;11) leukemia which is the most frequent leukemia in infants, childhood and adults suffering from MLL-r acute leukemia

    Unraveling the Activation Mechanism of Taspase1 which Controls the Oncogenic AF4–MLL Fusion Protein

    No full text
    We have recently demonstrated that Taspase1-mediated cleavage of the AF4–MLL oncoprotein results in the formation of a stable multiprotein complex which forms the key event for the onset of acute proB leukemia in mice. Therefore, Taspase1 represents a conditional oncoprotein in the context of t(4;11) leukemia. In this report, we used site-directed mutagenesis to unravel the molecular events by which Taspase1 becomes sequentially activated. Monomeric pro-enzymes form dimers which are autocatalytically processed into the enzymatically active form of Taspase1 (αββα). The active enzyme cleaves only very few target proteins, e.g., MLL, MLL4 and TFIIA at their corresponding consensus cleavage sites (CSTasp1) as well as AF4–MLL in the case of leukemogenic translocation. This knowledge was translated into the design of a dominant-negative mutant of Taspase1 (dnTASP1). As expected, simultaneous expression of the leukemogenic AF4–MLL and dnTASP1 causes the disappearance of the leukemogenic oncoprotein, because the uncleaved AF4–MLL protein (328 kDa) is subject to proteasomal degradation, while the cleaved AF4–MLL forms a stable oncogenic multi-protein complex with a very long half-life. Moreover, coexpression of dnTASP1 with a BFP-CSTasp1-GFP FRET biosensor effectively inhibits cleavage. The impact of our findings on future drug development and potential treatment options for t(4;11) leukemia will be discussed

    Unraveling the Activation Mechanism of Taspase1 which Controls the Oncogenic AF4-MLL Fusion Protein

    No full text
    We have recently demonstrated that Taspase1-mediated cleavage of the AF4–MLL oncoprotein results in the formation of a stable multiprotein complex which forms the key event for the onset of acute proB leukemia in mice. Therefore, Taspase1 represents a conditional oncoprotein in the context of t(4;11) leukemia. In this report, we used site-directed mutagenesis to unravel the molecular events by which Taspase1 becomes sequentially activated. Monomeric pro-enzymes form dimers which are autocatalytically processed into the enzymatically active form of Taspase1 (αββα). The active enzyme cleaves only very few target proteins, e.g., MLL, MLL4 and TFIIA at their corresponding consensus cleavage sites (CSTasp1) as well as AF4–MLL in the case of leukemogenic translocation. This knowledge was translated into the design of a dominant-negative mutant of Taspase1 (dnTASP1). As expected, simultaneous expression of the leukemogenic AF4–MLL and dnTASP1 causes the disappearance of the leukemogenic oncoprotein, because the uncleaved AF4–MLL protein (328 kDa) is subject to proteasomal degradation, while the cleaved AF4–MLL forms a stable oncogenic multi-protein complex with a very long half-life. Moreover, coexpression of dnTASP1 with a BFP-CSTasp1-GFP FRET biosensor effectively inhibits cleavage. The impact of our findings on future drug development and potential treatment options for t(4;11) leukemia will be discussed
    corecore