3,517 research outputs found

    Multiply Robust Causal Inference with Double Negative Control Adjustment for Categorical Unmeasured Confounding

    Full text link
    Unmeasured confounding is a threat to causal inference in observational studies. In recent years, use of negative controls to mitigate unmeasured confounding has gained increasing recognition and popularity. Negative controls have a longstanding tradition in laboratory sciences and epidemiology to rule out non-causal explanations, although they have been used primarily for bias detection. Recently, Miao et al. (2018) have described sufficient conditions under which a pair of negative control exposure and outcome variables can be used to nonparametrically identify the average treatment effect (ATE) from observational data subject to uncontrolled confounding. In this paper, we establish nonparametric identification of the ATE under weaker conditions in the case of categorical unmeasured confounding and negative control variables. We also provide a general semiparametric framework for obtaining inferences about the ATE while leveraging information about a possibly large number of measured covariates. In particular, we derive the semiparametric efficiency bound in the nonparametric model, and we propose multiply robust and locally efficient estimators when nonparametric estimation may not be feasible. We assess the finite sample performance of our methods in extensive simulation studies. Finally, we illustrate our methods with an application to the postlicensure surveillance of vaccine safety among children

    Adaptive locomotion of artificial microswimmers

    Full text link
    Bacteria can exploit mechanics to display remarkable plasticity in response to locally changing physical and chemical conditions. Compliant structures play a striking role in their taxis behavior, specifically for navigation inside complex and structured environments. Bioinspired mechanisms with rationally designed architectures capable of large, nonlinear deformation present opportunities for introducing autonomy into engineered small-scale devices. This work analyzes the effect of hydrodynamic forces and rheology of local surroundings on swimming at low Reynolds number, identifies the challenges and benefits of utilizing elastohydrodynamic coupling in locomotion, and further develops a suite of machinery for building untethered microrobots with self-regulated mobility. We demonstrate that coupling the structural and magnetic properties of artificial microswimmers with the dynamic properties of the fluid leads to adaptive locomotion in the absence of on-board sensors

    An Empirically Derived Three-Dimensional Laplace Resonance in the Gliese 876 Planetary System

    Get PDF
    We report constraints on the three-dimensional orbital architecture for all four planets known to orbit the nearby M dwarf Gliese 876 based solely on Doppler measurements and demanding long-term orbital stability. Our dataset incorporates publicly available radial velocities taken with the ELODIE and CORALIE spectrographs, HARPS, and Keck HIRES as well as previously unpublished HIRES velocities. We first quantitatively assess the validity of the planets thought to orbit GJ 876 by computing the Bayes factors for a variety of different coplanar models using an importance sampling algorithm. We find that a four-planet model is preferred over a three-planet model. Next, we apply a Newtonian MCMC algorithm to perform a Bayesian analysis of the planet masses and orbits using an n-body model in three-dimensional space. Based on the radial velocities alone, we find that a 99% credible interval provides upper limits on the mutual inclinations for the three resonant planets (Φcb<6.20∘\Phi_{cb}<6.20^\circ for the "c" and "b" pair and Φbe<28.5∘\Phi_{be}<28.5^\circ for the "b" and "e" pair). Subsequent dynamical integrations of our posterior sample find that the GJ 876 planets must be roughly coplanar (Φcb<2.60∘\Phi_{cb}<2.60^\circ and Φbe<7.87∘\Phi_{be}<7.87^\circ), suggesting the amount of planet-planet scattering in the system has been low. We investigate the distribution of the respective resonant arguments of each planet pair and find that at least one argument for each planet pair and the Laplace argument librate. The libration amplitudes in our three-dimensional orbital model supports the idea of the outer-three planets having undergone significant past disk migration.Comment: 19 pages, 11 figures, 8 tables. Accepted to MNRAS. Posterior samples available at https://github.com/benelson/GJ87

    The 55 Cancri Planetary System: Fully Self-Consistent N-body Constraints and a Dynamical Analysis

    Get PDF
    We present an updated study of the planets known to orbit 55 Cancri A using 1,418 high-precision radial velocity observations from four observatories (Lick, Keck, Hobby-Eberly Telescope, Harlan J. Smith Telescope) and transit time/durations for the inner-most planet, 55 Cancri "e" (Winn et al. 2011). We provide the first posterior sample for the masses and orbital parameters based on self-consistent n-body orbital solutions for the 55 Cancri planets, all of which are dynamically stable (for at least 10810^8 years). We apply a GPU version of Radial velocity Using N-body Differential evolution Markov Chain Monte Carlo (RUN DMC; B. Nelson et al. 2014) to perform a Bayesian analysis of the radial velocity and transit observations. Each of the planets in this remarkable system has unique characteristics. Our investigation of high-cadence radial velocities and priors based on space-based photometry yields an updated mass estimate for planet "e" (8.09±0.268.09\pm0.26 M⊕_\oplus), which affects its density (5.51±1.001.325.51\pm^{1.32}_{1.00} g cm−3^{-3}) and inferred bulk composition. Dynamical stability dictates that the orbital plane of planet "e" must be aligned to within 60o60^o of the orbital plane of the outer planets (which we assume to be coplanar). The mutual interactions between the planets "b" and "c" may develop an apsidal lock about 180o180^o. We find 36-45% of all our model systems librate about the anti-aligned configuration with an amplitude of 51o±10o6o51^o\pm^{6^o}_{10^o}. Other cases showed short-term perturbations in the libration of ϖb−ϖc\varpi_b-\varpi_c, circulation, and nodding, but we find the planets are not in a 3:1 mean-motion resonance. A revised orbital period and eccentricity for planet "d" pushes it further toward the closest known Jupiter analog in the exoplanet population.Comment: 12 pages, 5 figures, 4 tables, accepted to MNRAS. Figure 2 (left) is updated from published version. Posterior samples available at http://www.personal.psu.edu/ben125/Downloads.htm

    Overwintering Seeds as Reservoirs for Seedling Pathogens of Wetland Plant Species

    Get PDF
    Seed germination and seedling establishment are central to the distribution and abundance of plant species in wetlands. While fungal and oomycete pathogens are known to affect seed viability and emergence, relatively little is known about which fungi and oomycetes are associated with seeds in the soil or how these species affect seeds and seedlings. We characterized the fungi and oomycetes associated with overwintering seeds in wetlands and determined their potential to influence seed germination and subsequent seedling mortality. Fungi and oomycetes did not affect seed germination, despite the isolation of high frequencies of known seed and seedling pathogens in the fungal genera Alternaria, Peyronellaea, Epicoccum, and Fusarium. However, many of the most frequently isolated fungal species from overwintering seeds were highly virulent to seedlings. While both native and nonnative plant species were tested, we did not observe consistent differences in either seed germination or seedling susceptibility based on the invasive status of plants tested, contrary to what we expected given several established hypotheses for invasive success. The high seedling virulence of fungi from overwintering seeds coupled with the differential abundance of some of the more pathogenic fungi among seeds of different plant species, led us to the conclusion that the fungal pathogens that colonize seeds in the seed bank over winter are likely to strongly impact subsequent seedling establishment in wetlands the following spring despite not reducing overwintering seed germination in the seed bank or differently effecting invasive plant species
    • …
    corecore